

МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ, НАУКИ И МОЛОДЕЖИ РЕСПУБЛИКИ КРЫМ МУНИЦИПАЛЬНОЕ ОБРАЗОВАНИЕ ГОРОДСКОЙ ОКРУГ СИМФЕРОПОЛЬ РЕСПУБЛИКИ КРЫМ МБОУ "ТАВРИЧЕСКАЯ ШКОЛА-ГИМНАЗИЯ №20" ИМ. СВЯТИТЕЛЯ ЛУКИ КРЫМСКОГО" Г. СИМФЕРОПОЛЯ

РАССМОТРЕНО на заседании МО протокол № 4 от «26» августа 2025 г. Руководитель МО _______С.В.Минакова

СОГЛАСОВАНО
Заместитель директора по УВР
_____ Е. В.Ганьшина
«27 » августа 2025 г.

УТВЕРЖДЕНО приказом директора МБОУ «Таврическая школа-гимназия № 20 им.свт.Луки» г.Симферополя № 444 от «28» августа 2025г. Е.Г. Титянечко

РАБОЧАЯ ПРОГРАММА

КУРСА ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ «БИОЛОГИЯ. ПРОЕКТНО – ИССЛЕДОВАТЕЛЬСКАЯ ДЕЯТЕЛЬНОСТЬ.» ДЛЯ ОБУЧАЮЩИХСЯ 9 КЛАССА

34 ЧАСА

Составитель: учитель химии высшей категории Рымарчук О.В

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Актуальность и назначение программы. Программа разработана в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования, ориентирована на обеспечение индивидуальных потребностей обучающихся и направлена на достижение планируемых результатов освоения программы основного общего образования с учетом выбора участниками образовательных отношений курсов внеурочной деятельности. Это позволяет обеспечить единство обязательных требований ФГОС во всем пространстве школьного образования: не только на уроке, но и за его пределами.

Актуальность реализации данной программы обусловлена самой особенностью проектно-исследовательской деятельности. Эта деятельность лежит в основе познавательного интереса ребенка, является залогом умения планировать любые действия и важным условием успешной реализации идей. Любые изменения современного общества связаны с проектами и исследованиями — в науке, творчестве, бизнесе, общественной жизни. Поэтому важным элементом развития личности обучающегося является формирование основных навыков проектно-исследовательской деятельности.

Программой предусмотрено формирование современного теоретического уровня знаний, а также и практического опыта работы с лабораторным оборудованием, овладение приемами исследовательской деятельности. Методы организации образовательной и научно-исследовательской деятельности предусматривают формирование у обучающихся нестандартного творческого мышления, свободы самовыражения и индивидуальности суждений.

Для полного учета потребностей учащихся в программе используется дифференцированный подход, что стимулирует учащегося к увеличению потребности в индивидуальной, интеллектуальной и познавательной деятельности и развитию научно-исследовательских навыков. Программа станет востребованной в первую очередь школьниками, которые имеют стойкий интерес и соответствующую мотивацию к изучению предметов естественно-научного цикла, естественным наукам и технологиям.

В подростковом возрасте учащиеся проявляют свою заинтересованность в той или иной области знаний, научном направлении или профессиональной деятельности. Таким образом происходит формирование познавательной и профессиональной составляющей личности, помогает учащемуся в определении будущего жизненного пути и в профессиональном выборе после окончания школы. Подобного рода заинтересованность стимулирует постоянное желание школьника к познанию нового, расширению и углублению соответствующих знаний, и

получению новых в том числе практических навыков, а также мотивирует учащегося на профориентацию.

Программа нацелена на помощь ребенку в освоении основ организации и осуществления собственной проектно-исследовательской деятельности, а также в приобретении необходимого опыта для работы над индивидуальным исследованием или проектом. Программа поможет школьнику в более глубоком изучении интересующей его области естественных наук, а также в приобретении важных социальных навыков, необходимых для продуктивной социализации и формирования гражданской позиции:

- навыка самостоятельного решения актуальных исследовательских или практических задач, включающего в себя умение видеть и анализироватьпроблемы, нуждающиеся в решении, умение детально прорабатывать и реализовывать способы работы с ними, умение планировать собственную работу и самостоятельно контролировать свое продвижение к желаемому результату;
- навыка генерирования и оформления собственных идей, облечения их в удобную для распространения форму;
- - навыка уважительного отношения к чужим взглядам и идеям, оформленнымв работах других людей, других авторов владельцев интеллектуальной собственности;
- навыка публичного выступления перед большой аудиторией, аргументирования и отстаивания своей точки зрения, ответов на вопросы сверстников и взрослых, убеждения других в своей правоте, продвижения своих идей;
- навыка работы со специализированными компьютерными программами, лабораторным оборудованием, техническими устройствами, библиотечными фондами и иными ресурсами, с которыми может быть связана проектно-исследовательская деятельность школьника.

Кроме того, работа школьника над проектом или исследованием будет способствовать и развитию его адекватной самооценки.

Варианты реализации программы и формы проведения занятий.

Данная программа рассчитана на работу со школьниками 5-9 классов. Педагогу важнее акцентировать свое внимание не столько на качестве результата проекта или исследования, сколько на том, чтобы учащийся получал знания в том числе и через выполнение практического задания, делал выводы и умозаключения на основании своего исследования, учился сравнивать его результаты с теоретическим материалом и исследованиями других школьников. Таким образом, школьник освоит основы проектно-исследовательской деятельности и приобретет навык критического отношения к материалу.

Программа разбита на модули, которые могут быть использованы либо частично, либо полностью. Модуль «Молекулярные основы физиологии и фармакологии» рассчитан на 68 часов и может быть реализован в течении 2- х лет (по 34 часа в год).

Взаимосвязь с программой воспитания. Программа курса внеурочной деятельности разработана с учетом рекомендаций примерной программы воспитания, учитывает психолого-педагогические особенности данных возрастных

категорий. Это позволяет на практике соединить обучающую и воспитательную деятельность педагога, ориентировать ее не только на интеллектуальное, но и на нравственное, социальное развитие ребенка. Это проявляется:

- в приоритете личностных результатов реализации программы внеурочной деятельности, нашедших свое отражение и конкретизацию в примерной программе воспитания;
- в возможности комплектования разновозрастных групп для организации профориентационной деятельности школьников, воспитательное значение которых отмечается в примерной программе воспитания;
- в интерактивных формах занятий для школьников, обеспечивающих большую их вовлеченность в совместную с педагогом и другими детьми деятельность и возможность образования на ее основе детско-взрослых общностей, ключевое значение которых для воспитания подчеркивается примернойпрограммой воспитания.

Особенности работы учителя по программе. Задача учителя состоит в том, чтобы сопровождать процесс профессиональной ориентации школьника, раскрывая многообразную каждого через вовлечение В деятельность, организованную в разных формах. При этом результатом работы учителя в первую очередь является личностное развитие учащегося. Личностных результатовучитель совместной увлекая ученика И интересной достичь, устанавливая доброжелательную, деятельностью, занятий время поддерживающую атмосферу, насыщая занятия ценностным содержанием.

Примерная схема проведения занятий по программе:

- 1. Объяснение теоретического материала по теме.
- 2. Подготовка к экспериментальному занятию, обсуждение объектов для практического занятия.
- 3. Проведение практического занятия основная задача освоение методологии данного эксперимента.
- 4. По окончании предложить детям, которые заинтересовались данным экспериментом, развить его в исследовательский проект. Для этого необходимо обсудить объекты, которые ученик будет исследовать, составить план эксперимента.
 - 5. Помочь ученику проанализировать результаты эксперимента.

Оценить результаты проектно-исследовательской деятельности школьников можно в процессе защиты ими своих работ в рамках школьной научно-практической конференции.

Данный модуль курса внеурочной деятельности рассчитан на 2 ч в неделю в 9 классе, но во внеурочной деятельности МБОУ «Таврическая школа- гимназия №20 им.свт.Луки» г.Симферополя выделено 1 час в неделю, то есть 34 чана за год, вторую часть модуля предполагается на изучение в 10 классе, поэтому из тем будет изучена Тема 1- 20 часов и часть темы 2 из 20 часов 14 часов.

СОДЕРЖАНИЕ КУРСА ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ

Модуль «Молекулярные основы физиологии и фармакологии» 9 класс (68 часов)

1. Физиологическая химия. (20 часов)

Введение. Биогенные элементы: органогены: О, С, N, H. Активные формы кислорода, их получение, нейтрализация.

Макроэлементы: процент содержания в организме, выполняемая функция, содержание в продуктах питания. Ca2+ - связывающие белки, депонирование кальция, регуляция уровня кальция в организме: гормоны почек. Mg — строение хлорофилла, его активация солнечной энергией.

Микроэлементы: в каких молекулах содержатся, выполняемая функция, содержание в продуктах питания. Последствия передозировки микроэлементами. Fe – усваиваемые типы соединений железа. Гемопротеины, гемоцианин, цитохромы. Cu – усвоение и транспорт меди. Белки, содержащие медь. Патологические синдромы Менке и Вильсона, связанные с метаболизмом меди.

Токсичные элементы Периодической системы для организма. Влияние недостатка макро и микроэлементов на живые организмы.

Исследовательская работа «Количественная оценка содержания микроэлементов или витаминов в пищевых продуктах»

Жиры. Заболевания человека, связанные с нарушениями жирового обмена.

Дислипидемии.

Углеводы. Заболевания человека, связанные с нарушениями углеводного обмена. Сахарный диабет.

Белки. Строение. Заболевания человека, связанные с нарушениями белкового обмена. Функции белков. Ферменты. Механизм действия. Классы ферментативных реакций. Коферменты. Практическое занятие «Качественные реакции на органические молекулы». Практическое занятие «Денатурация белков» Практическое занятие «Изучение активности амилазы».

Витамины жирорастворимые, водорастворимые. Превращение витаминов в активные формы коферментов. Авитаминозы.

Основные типы метаболических реакций. Биоэнергетические процессы. Гликолиз. Цикл Кребса. Цепь переноса электронов. Окисление жирных кислот. Катабализм аминокислот. Глюконеогенез. Синтез углеводов, белков, жиров. Метаболитические заболевания. Практическое занятие «Решение задач на энергетический обмен».

Клетка. Понятие мембраны. Функции мембран. Виды транспорта в клетку.

Мембранные органоиды. Заболевания связанные с нарушением работы мембранных органелл, болезни накопления. Типы контактов между клетками. Значение межклеточной коммуникации для здоровья организма. Практическое занятие «Диализ (клеточка траубе)».

Ядро. Уровни упаковки хроматина. Хромосомные территории. Немембранные органоиды.

2. Молекулярная биология. (20 часов)

Основные вехи развития молекулярной биологии.

Нуклеиновые кислоты. Основные принципы строения. Практическая работа

«Выделение ДНК из банана». Практическая работа «Модель ДНК-оригами». Практическая работа «Определение качества препаратов ДНК с помощью спектрофотометрии» (при наличии оборудования).

Матричные синтезы. Репликация — основа клеточного деления. Принципы репликации. Практическая работа «Репликативная машина (игра-демонстрация)».

Практическая работа «ПЦР (модель амплификация на бумаге)».

Мутации. Что вызывает изменения в строении ДНК. Принципы репарации. Транскрипция. Практическая работа «Сила промотора».

Генетический код. Практическая работа «Решение задач на генетический код» Трансляция. Практическая работа «Фолдинг белков».

Организация генома вирусов Противовирусные средства, механизмы их действия.

Организация генома бактерий Антибактериальные препараты. Исследовательская работа «Распространение антибиотикорезистентных бактерий» Организация генома эукариот Геномное редактирование. Практическая работа «Работа в современных генетических базах данных. Проведение In silico

анализа последовательностей генов».

3. Фармакология (28 часов)

Понятие о лекарствах. Принципы подхода к поиску новых лекарственных средств. Скрининг и его методы. Исследовательская работа «Эксперименты по определению токсичности веществ на артемидиях».

Пути введения ЛС. Фармакокинетика лекарственных веществ. Всасывание (абсорбция) лекарств. Основные механизмы всасывания. Транспорт лекарственных веществ. Гены и белки первой фазы биотрансформации. Пути выведения лекарствиз организма. Экскреция и элиминация. Гены и белки второй фазыбиотрансформации. Фармакодинамика. Главное и побочное, резорбтивное и местное, прямое, непрямое и рефлекторное действие.

Виды взаимодействия лекарств. Синергизм и антагонизм при совместном действии лекарственных веществ, их разновидности.

Трансмембранный сигналинг. Типы клеточных рецепторов. Мембранные: ионные каналы, каталитические и сопряженные с G-белками; внутриклеточные: цитоплазматические и ядерные. Механизмы лиганд-рецепторного взаимодействия. Селективность (избирательность) действия, связь «химическая структура — фармакологическая активность веществ».

Фармакологической модуляции синаптической холинергической передачи. фармакологические Молекулярный механизм лействия И свойства холиноблокаторов, ганглиоблокаторов курареподобных средств. Фармакологическая адренергического регуляция активности синапса. Адреномиметики, адреноблокаторы, симпатолитики. Практическая работа

«Влияние адреналина на сердечные сокращения (программное обеспечение)».

Молекулярная фармакология антиаллергических средств. Гистаминовые рецепторы: типы, молекулярная организация. Стабилизаторы мембран тучных клеток: молекулярный механизм действия, особенности клинического применения, точки приложения действия ингибиторов липидных медиаторов.

Механизм действия и применение препаратов, стимулирующих процессы иммунитета. Фармакологическая характеристика интерлейкинов: получение, механизм действия, применение. Основы патофизиологии острофазового ответа, медиация воспаления. Молекулярный механизм противовоспалительного действия глюкокортикостероидов, нестероидных противовоспалительных средств. Практическая работа «Гистологические препараты иммунной системы».

Понятие о наркозе и наркозных препаратах. Клеточный и нервный наркоз.

Фармакологическая характеристика отдельных групп наркозных средств. Последовательность действия на центральную систему. Практическая работа

«Гистологические препараты нервной системы».

Физиологический сон; фазы сна. Виды нарушений сна Понятие о медикаментозном сне и снотворных препаратах (гипнотиках).

Молекулярные аспекты ноцицепции. Опиатные рецепторы, их типы.

Энкефалины и эндорфины - эндогенные лиганды опиатных рецепторов.

Антипсихотическое действие, влияние на функцию экстрапирамиднойсистемы, артериальное эмоциональную сферу, рвотный центр, давление, терморегуляции. Молекулярные механизмы действия нейролептиков, влияние на дофаминовые, серотониновые, адрено- и гистаминовые рецепторы, их действие на клеточные мембраны, на депонирование тканевых моноаминов. Потенциалзависимые натриевые каналы как мишени действия местных анестетиков. Способы ингибирования потенциал-зависимых натриевых каналов местными анестетиками. Практическая работа «Карта экспрессии дофаминовых и серотониновых рецепторов в мозге мышей». Исследовательская работа «Поведенческие тесты на рыбках Danio Светло-темная камера». Исследовательская

«Поведенческие тесты на рыбках Danio rario. Открытое поле». Исследовательская работа «Поведенческие тесты на рыбках Danio rario. Стайное поведение».

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ

Занятия в рамках программы направлены на обеспечение достижения школьниками следующих личностных, метапредметных и предметных образовательных результатов.

Личностные результаты:

В сфере гражданского воспитания: готовность к конструктивной совместной деятельности при выполнении исследований и проектов, стремление к взаимопониманию и взаимопомощи.

В сфере патриотического воспитания: отношение к биологии как к важной составляющей культуры, гордость за вклад российских и советских учёных в развитие мировой биологической науки.

В сфере духовно-нравственного воспитания: готовность оценивать поведение и поступки с позиции нравственных норм и норм экологической культуры; понимание значимости нравственного аспекта деятельности человека в медицине и биологии.

- *В сфере эстемического воспитания:* понимание роли биологии в формировании эстетической культуры личности.
- В сфере физического воспитания, формирования культуры здоровья и эмоционального благополучия: ответственное отношение к своему здоровью и установка на здоровый образ жизни (здоровое питание, соблюдение гигиенических правил и норм, сбалансированный режим занятий и отдыха, регулярная физическая активность); осознание последствий и неприятие вредных привычек (употребление алкоголя, наркотиков, курение) и иных форм вреда для физического и психического

здоровья; соблюдение правил безопасности, в том числе навыки безопасного поведения в природной среде; сформированность навыка рефлексии, управление собственным эмоциональным состоянием.

В сфере трудового воспитания: активное участие в решении практических задач (в рамках семьи, школы, города, края) биологической и экологической направленности, интерес к практическому изучению профессий, связанных с биологией.

В сфере экологического воспитания: ориентация на применение биологических знаний при решении задач в области окружающей среды; осознание экологических проблем и путей их решения; готовность к участию в практической деятельности экологической направленности.

В сфере понимания ценности научного познания: ориентация на современную систему научных представлений об основных биологических закономерностях, взаимосвязях человека с природной и социальной средой;

понимание роли биологической науки в формировании научного мировоззрения; развитие научной любознательности, интереса к биологической науке, навыков исследовательской деятельности.

В сфере адаптации к изменяющимся условиям социальной и природной среды: адекватная оценка изменяющихся условий; принятие решения (индивидуальное, в группе) в изменяющихся условиях на основании анализа биологической информации; планирование действий в новой ситуации на основании знаний биологических закономерностей.

Метапредметные результаты:

В сфере овладения универсальными учебными познавательными действиями:

Базовые логические действия:

- выявлять и характеризовать существенные признаки биологических объектов (явлений);
- устанавливать существенный признак классификации биологических объектов (явлений, процессов), основания для обобщения и сравнения, критерии проводимого анализа;
- с учётом предложенной биологической задачи выявлять закономерности и противоречия в рассматриваемых фактах и наблюдениях; предлагать критерии для выявления закономерностей и противоречий;
- выявлять дефициты информации, данных, необходимых для решения поставленной задачи;
- выявлять причинно-следственные связи при изучении биологических явлений и процессов; делать выводы с использованием дедуктивных и индуктивных умозаключений, умозаключений по аналогии, формулировать гипотезы о взаимосвязях;
- самостоятельно выбирать способ решения учебной биологической задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).

Базовые исследовательские действия:

- использовать вопросы как исследовательский инструмент познания;
- формулировать вопросы, фиксирующие разрыв между реальным и желательным

состоянием ситуации, объекта, и самостоятельно устанавливать искомое и данное;

- •формировать гипотезу об истинности собственных суждений, аргументировать свою позицию, мнение;
- проводить по самостоятельно составленному плану наблюдение, несложный биологический эксперимент, небольшое исследование по установлению особенностей биологического объекта (процесса) изучения,
- причинно-следственных связей и зависимостей биологических объектов между собой;
- оценивать на применимость и достоверность информацию, полученную в ходе наблюдения и эксперимента;
- самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, эксперимента, владеть инструментами оценки достоверности полученных выводов и обобщений;
- прогнозировать возможное дальнейшее развитие биологических процессов и их последствия в аналогичных или сходных ситуациях, а также выдвигать предположения об их развитии в новых условиях и контекстах.

Работа с информацией:

- применять различные методы, инструменты и запросы при поиске и отборе биологической информации или данных из источников с учётом предложенной учебной биологической задачи;
- выбирать, анализировать, систематизировать и интерпретировать биологическую информацию различных видов и форм представления;
- находить сходные аргументы (подтверждающие или опровергающие одну иту же идею, версию) в различных информационных источниках;
- самостоятельно выбирать оптимальную форму представления информации и иллюстрировать решаемые задачи несложными схемами, диаграммами, иной графикой и их комбинациями;
- оценивать надёжность биологической информации по критериям, предложенным учителем или сформулированным самостоятельно;
- запоминать и систематизировать биологическую информацию.

В сфере овладения универсальными учебными коммуникативными действиями Общение:

- воспринимать и формулировать суждения, выражать эмоции в процессе выполнения практических и лабораторных работ;
- выражать себя (свою точку зрения) в устных и письменных текстах;
- распознавать невербальные средства общения, понимать значение социальных знаков, знать и распознавать предпосылки конфликтных ситуаций и смягчать конфликты, вести переговоры;
- понимать намерения других, проявлять уважительное отношение к собеседнику и в корректной форме формулировать свои возражения;
- в ходе диалога и/или дискуссии задавать вопросы по существу обсуждаемой биологической темы и высказывать идеи, нацеленные на решение биологической задачи и поддержание благожелательности общения;
- сопоставлять свои суждения с суждениями других участников диалога обнаруживать различия и сходство позиций;

- публично представлять результаты выполненного биологического опыта (эксперимента, исследования, проекта);
- самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории и в соответствии с ним составлять устные и письменные тексты с использованием иллюстративных материалов.

Совместная деятельность (сотрудничество):

- понимать и использовать преимущества командной и индивидуальной работы при решении конкретной биологической проблемы, обосновывать необходимость применения групповых форм взаимодействия при решении поставленной учебной задачи;
- принимать цель совместной деятельности, коллективно строить действия по её достижению: распределять роли, договариваться, обсуждать процесс и результат совместной работы;
- уметь обобщать мнения нескольких людей, проявлять готовность руководить, выполнять поручения, подчиняться;
- планировать организацию совместной работы, определять свою роль (с учётом предпочтений и возможностей всех участников взаимодействия), распределять задачи между членами команды, участвовать в групповых формах работы (обсуждения, обмен мнениями, мозговые штурмы и иные);
- выполнять свою часть работы, достигать качественного результата по своему направлению и координировать свои действия с другими членами команды;
- оценивать качество своего вклада в общий продукт по критериям, самостоятельно сформулированным участниками взаимодействия; сравнивать результаты с исходной задачей и вклад каждого члена команды в достижение результатов, разделять сферу ответственности и проявлять готовность к предоставлению отчёта перед группой;
- овладеть системой универсальных коммуникативных действий, которая обеспечивает сформированность социальных навыков и эмоционального интеллекта школьников.
- В сфере овладения универсальными учебными регулятивными действиями: Самоорганизация:
- выявлять проблемы для решения в жизненных и учебных ситуациях, используя биологические знания;
- ориентироваться в различных подходах принятия решений (индивидуальное, принятие решения в группе, принятие решений группой);
- самостоятельно составлять алгоритм решения задачи (или его часть), выбирать способ решения учебной биологической задачи с учётом имеющихся ресурсов и собственных возможностей, аргументировать предлагаемые варианты решений;
- составлять план действий (план реализации намеченного алгоритма решения), корректировать предложенный алгоритм с учётом получения новых биологических знаний об изучаемом биологическом объекте;
- делать выбор и брать ответственность за решение.

Самоконтроль (рефлексия):

• владеть способами самоконтроля, самомотивации и рефлексии;

- давать адекватную оценку ситуации и предлагать план её изменения;
- учитывать контекст и предвидеть трудности, которые могут возникнуть при решении учебной биологической задачи, адаптировать решение к меняющимся обстоятельствам;
- объяснять причины достижения (недостижения) результатов деятельности, давать оценку приобретённому опыту, уметь находить позитивное впроизошедшей ситуации;
- вносить коррективы в деятельность на основе новых обстоятельств, изменившихся ситуаций, установленных ошибок, возникших трудностей;
- оценивать соответствие результата цели и условиям. Эмоциональный интеллект:
- различать, называть и управлять собственными эмоциями и эмоциями других;
- выявлять и анализировать причины эмоций;
- ставить себя на место другого человека, понимать мотивы и намерениядругого;
- регулировать способ выражения эмоций.
- Принятие себя и других;
- осознанно относиться к другому человеку, его мнению;
- признавать своё право на ошибку и такое же право другого;
- открытость себе и другим;
- осознавать невозможность контролировать всё вокруг;
- овладеть системой универсальных учебных регулятивных действий, которая обеспечивает формирование смысловых установок личности (внутренняя позиция личности), и жизненных навыков личности (управления собой, самодисциплины, устойчивого поведения).

Предметные результаты освоения программы В познавательной (интеллектуальной) сфере:

- приобретение опыта использования методов биологической науки с целью изучения биологических объектов, явлений и процессов: наблюдение, описание, проведение несложных биологических опытов и экспериментов, в том числе с использованием аналоговых и цифровых биологических приборов и инструментов;
- формирование умения интегрировать биологические знания со знаниями из других учебных предметов (физики, химии, географии, истории, обществознания и т. д.);
- формирование умений решать учебные задачи биологического содержания, выявлять причинно-следственные связи, проводить качественные и количественные расчеты, делать выводы на основании полученных результатов;
- формирование умения планировать учебное исследование или проектную работу с учетом поставленной цели: формулировать проблему, гипотезу и ставить задачи исследования, выбирать адекватно поставленной цели методы, делать выводы по результатам исследования или проектной деятельности;
- формирование интереса к углублению биологических знаний (предпрофильная подготовка и профессиональная ориентация) и выбору биологии как профильного предмета на ступени среднего полного образования для будущей профессиональной деятельности, в области биологии, медицины, экологии,

психологии, ветеринарии, сельского хозяйства;

- владение навыками работы с информацией естественно-научного содержания, представленной в разной форме (в виде текста, табличных данных, схем, графиков, диаграмм, моделей, изображений), критического анализа информации и оценки ее достоверности;
- умение интегрировать биологические знания со знаниями других учебных предметов; интерес к углублению биологических знаний и выбору биологии как профильного предмета на уровне среднего общего образования для будущей профессиональной деятельности в области биологии, медицины, экологии, ветеринарии, сельского хозяйства, пищевой промышленности, психологии, искусства, спорта иметь четкие представления о материалистической сущности геномов живых организмов и регуляцию их работы;
- знание основных факторов окружающей среды, влияющих на развитие и существование живых организмов, адаптаций к факторам окружающей среды;
- знание основных подходов биотехнологии, использования ее достижений в современной жизни человека, особенности использования живых организмов для производственных нужд человека;
- знание основных подходов селекции и биотехнологии культурных растений, характеризовать генетически модифицированные растения, оперировать понятиями, гибридизация, отдаленная гибридизация, искусственный отбор, гетерозис, трансформация, мутагенез, генетическое редактирование;
- понимание молекулярных механизмов реализации наследственной информации и умение свободно оперировать основными понятиями молекулярной биологии и ее современных направлений геномики, метагеномики, протеомики;
- знание основных заболеваний человека, механизмов их развития, способах их диагностики и лечения;
- формирование умения использовать понятийный аппарат и символический язык генетики, грамотное применение научных терминов, понятий, теорий, законов для объяснения наблюдаемых биологических объектов, явлений и процессов, позволяющих заложить фундамент научного мировоззрения.

В ценностно-ориентационной сфере:

— знание, что применение современных технологий молекулярной биологии позволяет успешно решать такие злободневные проблемы, как охрана окружающей среды, сохранение здоровья человека, контроль и восстановление экосистем.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Модуль «Молекулярные основы физиологии и фармакологии» 9 класс

Темы	Основное содержание	Деятельность школьников
Тема 1.	Введение. Биогенные элементы:	Исследовательская
Физиологическая	органогены: O, C, N, H. Активные	работа
химия (20 ч)	формы кислорода, ихполучение,	«Количественная
	нейтрализация.	оценка содержания
	Макроэлементы: процент	микроэлементов или

содержания в организме, выполняемая функция, содержание в продуктах питания. Ca2+ - связывающие белки, депонирование кальция, регуляция на органические уровня кальция в организме: гормоны почек. Mg – строение хлорофилла, его активация солнечной энергией. Микроэлементы: в каких молекулах содержатся, выполняемая функция, содержание в продуктах питания. Последствия передозировки микроэлементами. Fe – усваиваемые типы соединений железа. Гемопротеины, гемоцианин, цитохромы. Cu – усвоение и транспорт меди. Белки, содержащие медь. Патологические синдромы Менке и Вильсона, связанные с метаболизмом меди. Токсичные элементы Периодической системы для организма. Влияние недостатка макро и микроэлементов на живые организмы. Жиры. Заболевания человека, связанные с нарушениями жирового обмена. Дислипидемии. Углеводы. Заболевания человека, связанные с нарушениями углеводного обмена. Сахарный диабет. Белки. Строение. Заболевания человека, связанные с нарушениями белкового обмена. Функции белков. Ферменты. Механизм действия. Классы ферментативных реакций. Коферменты. Витамины жирорастворимые, водорастворимые. Превращение

витаминов в пищевых продуктах». Практическое занятие «Качественныереакции молекулы». Практическое занятие «денатурация белков» Практическое занятие «Изучение активности амилазы». Практическое занятие «Диализ (клеточка траубе)».

витаминов в активные формы коферментов. Авитаминозы. Основные типы метаболических реакций. Биоэнергетические процессы. Гликолиз. Цикл Кребса. Цепь переноса электронов. Окисление жирных кислот. Катаболизм аминокислот. Глюконеогенез. Синтез углеводов, белков, жиров. Метаболитические заболевания. Практическое занятие: «решение задач на энергетический обмен» Клетка. Понятие мембраны. Функции мембран. Виды транспорта в клетку. Мембранные органоиды. Заболевания связанные с нарушением работы мембранных органелл, болезни накопления. Типы контактов между клетками. Значение межклеточной коммуникации для здоровья организма. Ядро. Уровни упаковки хроматина. Хромосомные территории. Немембранные органоиды.

Тема 2. Молекулярная биология (20 ч)

Основные развития Практическая работа вехи молекулярной Нуклеиновые кислоты. Основные принципы строения. Матричные синтезы. Репликация основа клеточного деления. Принципы репликации. Мутации. Что вызывает изменения в строении ДНК. Принципы репарации. Транскрипция. Генетический код. Трансляция. Организация генома вирусов Противовирусные средства, механизмы их действия. Организация генома бактерий

биологии.«Выделение ДНК из банана». Практическая работа «Модель ДНКоригами». Практическая работа «Определение качества препаратов ДНК с помощью спектрофотометрии» (при наличии оборудования).

Практическая работа

(игра-

«Репликативнаямашина

Антибактериальные препараты. демонстрация)». Организация генома эукариот Практическая работа Геномное редактирование. «ПЦР (модель амплификация на бумаге)». Практическая работа «Сила промотора». Практическая работа «Решение задач на генетический код». Практическая работа «Фолдинг белков». Исследовательская работа «Распространение антибиотикорезистент ных бактерий». Практическая работа «Работа в современных генетических базах данных. Проведение In silico анализа последовательностей генов». Понятие о лекарствах. Принципы Тема 3. Исследовательская подхода к поиску новых работа «Эксперимента Фармакология (28 ч) лекарственных средств. по определению Скрининг и его методы. токсичности веществ Пути введения ЛС. на артемидиях». Фармакокинетика лекарственных Практическая работа веществ. Всасывание «Карта экспрессии (абсорбция) лекарств. Основные дофаминовых и механизмы всасывания. серотониновых Транспорт лекарственных рецепторов в мозге веществ. Гены и белки первой мышей». фазы биотрансформации. Пути Исследовательская выведения лекарств из работа организма. Экскреция и «Поведенческие тесты на рыбках Danio rario. элиминация. Гены и белки второй фазы биотрансформации. Светло-темная Фармакодинамика. Главное и камера». побочное, резорбтивное и Исследовательская местное, прямое, непрямое и работа рефлекторное действие. «Поведенческие тесты

Виды взаимодействия лекарств. Синергизм и антагонизм при совместном действии лекарственных веществ, их разновидности Трансмембранный сигналинг. Типы клеточных рецепторов. Мембранные: ионные каналы, каталитические и сопряженные с G-белками; внутриклеточные: цитоплазматические и ядерные. Механизмы лиганд-рецепторного взаимодействия. Селективность (избирательность) действия, связь «химическая структура – фармакологическая активность веществ» Фармакологической модуляции синаптической холинергической передачи. Молекулярный механизм действия и фармакологические свойства Мхолиноблокаторов, ганглиоблокаторов и курареподобных средств. Фармакологическая регуляция активности адренергического синапса. Адреномиметики, адреноблокаторы, симпатолитики. Молекулярная фармакология антиаллергических средств. Гистаминовые рецепторы: типы, молекулярная организация. Стабилизаторы мембран тучных клеток: молекулярный механизм действия, особенности клинического применения, точки приложения действия ингибиторов липидных медиаторов. Механизм действия и применение препаратов, стимулирующих процессы иммунитета. Фармакологическая

на рыбках Danio rario. Открытое поле». Исследовательская работа «Поведенческие тесты на рыбках Danio rario. Стайное поведение». Практическая работа «Влияние адреналинана сердечные сокращения (программное обеспечение)». Практическая работа «Гистологические препараты иммунной системы». Практическая работа «Гистологические препараты нервной системы».

характеристика интерлейкинов: получение, механизм действия, применение. Основы патофизиологии острофазового ответа, медиация воспаления. Молекулярный механизм противовоспалительного действия глюкокортикостероидов, нестероидных противовоспалительных средств. Понятие о наркозе и наркозных препаратах. Клеточный и нервный наркоз. Фармакологическая характеристика отдельных групп наркозных средств. Последовательность действия на центральную систему. Физиологический сон; фазы сна. Виды нарушений сна Понятие о медикаментозном сне и снотворных препаратах (гипнотиках). Молекулярные аспекты ноцицепции. Опиатные рецепторы, их типы. Энкефалины и эндорфины эндогенные лиганды опиатных рецепторов. Антипсихотическое действие, влияние на функцию экстрапирамидной системы, эмоциональную сферу, рвотный центр, артериальное давление, центр терморегуляции. Молекулярные механизмы действия нейролептиков, влияние на дофаминовые, серотониновые, адрено- и гистаминовые рецепторы, ихдействие на клеточные мембраны, на депонированиетканевых моноаминов. Потенциал-зависимые натриевые

N P	каналы как мишени действия местных анестетиков. Способы ингибирования потенциал-	
3	вависимых натриевых каналов	
L N	местными анестетиками.	

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ

№	ТЕМА УРОКА	Сроки выполнения	
п/п		ПЛАН	ФАКТ
		9аб	9аб
Тема 1.	Физиологическаяхимия (20 ч)		
1	Введение. Биогенные элементы: органогены: О, С, N, H.		
	Активные формы кислорода, ихполучение, нейтрализация.		
2	Макроэлементы: процент содержания в организме,		
_	выполняемая функция, содержание в продуктах питания.		
	Са2+ - связывающие белки, депонирование кальция,		
	регуляция уровня кальция в организме: гормоны почек. Мд		
	– строение хлорофилла, его активация солнечной энергией.		
3	Микроэлементы: в каких молекулах содержатся,		
	выполняемая функция, содержание в продуктах питания.		
	Последствия передозировки микроэлементами. Fe —		
	усваиваемые типы соединений железа. Гемопротеины,		
	гемоцианин, цитохромы. Си – усвоение и транспорт меди.		
4	Белки, содержащие медь. Патологические синдромы Менке		
	и Вильсона, связанные сметаболизмом меди.		
	Влияние недостатка макро и микроэлементов на живые		
	организмы.		
5	Токсичные элементы Периодической системы для		
	организма.		
6	Жиры. Заболевания человека, связанные с нарушениями		
	жирового обмена. Дислипидемии		
7	Углеводы. Заболевания человека, связанные с нарушениями		
	углеводного обмена. Сахарный диабет.		
8	Белки. Строение. Заболевания человека, связанные с		
	нарушениями белкового обмена.		
9	Ферменты.		
	Механизм действия. Классыферментативных реакций.		
	Коферменты.		
10	Функции белков. Витамины жирорастворимые,		
	водорастворимые. Превращение витаминов в активные		
	формы коферментов. Авитаминозы.		
11	Основные типы метаболических реакций.		
10	Биоэнергетические процессы.		
12	Гликолиз. Цикл Кребса. Цепь переноса электронов		
13	Окисление жирных кислот. Катаболизм аминокислот.		
1.4	Глюконеогенез.		
14	Синтез углеводов, белков, жиров. Метаболитические		
15	заболевания.		
15	Практическое занятие: «решение задач на энергетический обмен»		
16			
10	Клетка. Понятие мембраны. Функции мембран. Виды		
17	транспорта в клетку. Мембранные органоиды.		
18	Заболевания связанные с нарушением работы мембранных		
18	органелл, болезни накопления.		
	Типы контактов между клетками. Значение межклеточной		
	типы контактов между клегками. Эпачение межклеточной		

	коммуникации для здоровья организма.	
19	Ядро. Уровни упаковки хроматина. Хромосомные	
	территории.	
20	Немембранныеорганоиды.	09.02
Тема 2	2. Молекулярнаябиология (14 ч)	
21	Основные вехи развитиямолекулярной биологии.	
22	Нуклеиновые кислоты.	
	Основные принципы строения.	
23	Практическая работа	
	«Модель ДНК-оригами».	
24	Матричные синтезы. Репликация	
	– основа клеточного деления. Принципы репликации.	
25	Мутации. Что вызывает изменения в строении ДНІ	
	Принципы репарации.	
26	Транскрипция.	
	Генетический код. Трансляция	
27	Организация генома вирусов	
28	Противовирусные средства, механизмы их действия	
29	Организация генома бактерий	
30	Антибактериальные препараты.	
31	Организация генома эукариот	
32	Геномное редактирование.	
33	Практическая работа«Решение задач на генетический код».	
34	Практическая работа «Решение задач»	