Муниципальное бюджетное общеобразовательное учреждение «Ялтинская средняя школа-лицей № 9» муниципального образования городской округ Ялта Республики Крым

Рассмотрена и принята

на заседании МО Протокол № 4 от «30» августа 2022г.

СОГЛАСОВАНО

Заместитель директора по УВР «30» августа 2022г.

УТВЕРЖДЕНО

приказом от 31.08.2022 г. № 421

Директор Ю.Е. Соловей

РАБОЧАЯ ПРОГРАММА

по БИОЛОГИИ (углубленный уровень) 10-Б класс естественнонаучного профиля (медицинской направленности) Пригор Евгении Леонидовны, высшая категория

Количество учебных недель:

34 недели

Количество часов: всего 102 часа; в неделю 3 часа;

Рабочая программа составлена на основе примерной рабочей программы по биологии для 10 классов(углубленный уровень). Предметная линия учебников «Линия жизни». 10-11 классы : учеб. пособие для общеобразоват. организаций / [В. В. Пасечник и др.]. — 2-е изд. — М. : Просвещение, 2022.

Методических рекомендаций об особенностях преподавания биологии в общеобразовательных организациях Республики Крым в 2022-2023 учебном году; - Программы воспитания МБОУ «ЯСШЛ № 9» на 2021-2025 г.г., утвержденной приказом от 20.08.2021 № 319.

Учебник, учебное пособие, используемые для реализации рабочей программы. Биология 10 класс. В.В. Пасечник Биология (углубленный уровень) – М.:Просвещение,2022 г.

Используется оборудование школьного технопарка «Кванториум»

Ялта

2022

Документ подписан простой электронной подписью Дата, время подписания: 27.02.2023 2:49:39 Ф.И.О. должностного лица: Соловей Юрий Евгеньевич Должность: Директор Уникальный программный ключ: c82030d7-43c4-469f-aabe-6543e2c05deb

Планируемые предметные результаты освоения предмета

Личностными результатами обучения общей биологии в старшей профильной школе являются:

- развитие познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к биологии как к элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к обоснованному выбору жизненного пути в соответствии с собственными интересами и возможностями;
- мотивация своей образовательной деятельности на основе личностно ориентированного подхода;
- формирование ценностных отношений друг к другу, к учителю, к авторам открытий и изобретений, к результатам обучения;

Метапредметными результатами являются:

- приобретение и закрепление навыков эффективного получения и освоения учебного материала с использованием учебной литературы (учебников и пособий) , на лекциях, семинарских и практических занятиях;
- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между альтернативными фактами и гипотезами, выдвигаемыми для их объяснения, теоретическими моделями и реальными объектами, овладение УУД на примере выдвижения гипотез для объяснения известных фактов и проведения их экспериментальной проверки, разработки теоретических моделей процессов и явлений;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находит в нем ответы на поставленные вопросы и излагать
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- развитие монологической и диалогической речи, умение выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное аргументированное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Предметные результаты освоения предметной области «Биологии»

- сформированность основ целостной научной картины мира;
- формирование понимания взаимосвязи и взаимозависимости естественных наук;
- сформированность понимания влияния естественных наук на окружающую среду, экономическую, технологическую, социальную и этическую сферы деятельности человека:
- создание условий для развития навыков учебной, проектно-исследовательской, творческой деятельности, мотивации обучающихся к саморазвитию;
- сформированность умений анализировать, оценивать, проверять на достоверность и обобщать научную информацию;
- чсформированность навыков безопасной работы во время проектно-исследовательской и экспериментальной деятельности, при использовании лабораторного оборудования;

Предметные результаты изучения предметной области "Биология" включают результаты:

- 1) сформированность системы знаний об общих биологических закономерностях, законах, теориях;
- 2) сформированность умений исследовать и анализировать биологические объекты и системы, объяснять закономерности биологических процессов и явлений; прогнозировать последствия значимых биологических исследований;
- 3) владение умениями выдвигать гипотезы на основе знаний об основополагающих биологических закономерностях и законах, о происхождении и сущности жизни, глобальных изменениях в биосфере; проверять выдвинутые гипотезы экспериментальными средствами, формулируя цель исследования;
- 4) владение методами самостоятельной постановки биологических экспериментов, описания, анализа и оценки достоверности полученного результата;
- 5) сформированность убежденности в необходимости соблюдения этических норм и экологических требований при проведении биологических исследований.

Выпускник на углубленном уровне научится:

- о оценивать роль биологических открытий и современных исследований в развитии науки и в практической деятельности людей;
- о оценивать роль биологии в формировании современной научной картины мира, прогнозировать перспективы развития биологии;
- устанавливать и характеризовать связь основополагающих биологических понятий (клетка, организм, вид, экосистема, биосфера) с основополагающими понятиями других естественных наук;
- о обосновывать систему взглядов на живую природу и место в ней человека, применяя биологические теории, учения, законы, закономерности, понимать границы их применимости;
- о проводить учебно-исследовательскую деятельность по биологии: выдвигать гипотезы, планировать работу, отбирать и преобразовывать необходимую информацию, проводить эксперименты, интерпретировать результаты, делать выводы на основе полученных результатов.
- о выявлять и обосновывать существенные особенности разных уровней организации жизни;
- о устанавливать связь строения и функций основных биологических макромолекул, их роль в процессах клеточного метаболизма;
- о решать задачи на определение последовательности нуклеотидов ДНК и иРНК (мРНК), антикодонов тРНК, последовательности аминокислот в молекуле белка, применяя знания о реакциях матричного синтеза, генетическом коде, принципе комплементарности;
- о делать выводы об изменениях, которые произойдут в процессах матричного синтеза, в случае изменения последовательности нуклеотидов ДНК;
- о сравнивать фазы деления клетки; решать задачи на определение и сравнение количества генетического материала (хромосом и ДНК) в клетках многоклеточных организмов в разных фазах клеточного цикла;
- о выявлять существенные признаки строения клеток организмов разных царств живой природы, устанавливать взаимосвязь строения и функций частей и органоидов клетки;
- о обосновывать взаимосвязь пластического и энергетического обменов;
- о сравнивать процессы пластического и энергетического обменов, происходящих в клетках живых организмов;
- о определять количество хромосом в клетках растений основных отделов на разных этапах жизненного цикла;

- о решать генетические задачи на дигибридное скрещивание, сцепленное (в том числе с полом) наследование, анализирующее скрещивание, применяя законы наследственности и закономерности сцепленного наследования;
- о раскрывать причины наследственных заболеваний, аргументировать необходимость мер предупреждения таких заболеваний;
- о сравнивать разные способы размножения организмов;
- о характеризовать основные этапы онтогенеза организмов;
- о выявлять причины и существенные признаки модификационной и мутационной изменчивости; обосновывать роль изменчивости в естественном и искусственном отборе;
- о обосновывать значение разных методов селекции в создании сортов растений, пород животных и штаммов микроорганизмов;
- о обосновывать причины изменяемости и многообразия видов, применяя синтетическую теорию эволюции;
- о характеризовать популяцию как единицу эволюции, вид как систематическую категорию и как результат эволюции;
- о устанавливать связь структуры и свойств экосистемы;
- о составлять схемы переноса веществ и энергии в экосистеме (сети питания), прогнозировать их изменения в зависимости от изменения факторов среды;
- аргументировать собственную позицию по отношению к экологическим проблемам и поведению в природной среде;
- о обосновывать необходимость устойчивого развития как условия сохранения биосферы;
- о оценивать практическое и этическое значение современных исследований в биологии, медицине, экологии, биотехнологии; обосновывать собственную оценку;
- выявлять в тексте биологического содержания проблему и аргументированно ее объяснять;
- о представлять биологическую информацию в виде текста, таблицы,
- о схемы, графика, диаграммы и делать выводы на основании представленных данных; преобразовывать график, таблицу, диаграмму, схему в текст биологического содержания.

Выпускник на углубленном уровне получит возможность научиться:

- организовывать и проводить индивидуальную исследовательскую деятельность по биологии (или разрабатывать индивидуальный проект): выдвигать гипотезы, планировать работу, отбирать и преобразовывать необходимую информацию, проводить эксперименты,
- о интерпретировать результаты, делать выводы на основе полученных результатов, представлять продукт своих исследований;
- о прогнозировать последствия собственных исследований с учетом этических норм и экологических требований;
- о выделять существенные особенности жизненных циклов представителей разных отделов растений и типов животных; изображать циклы развития в виде схем;
- о анализировать и использовать в решении учебных и исследовательских задач информацию о современных исследованиях в биологии, медицине и экологии;
- о аргументировать необходимость синтеза естественнонаучного и социогуманитарного знания в эпоху информационной цивилизации;
- моделировать изменение экосистем под влиянием различных групп факторов окружающей среды;
- выявлять в процессе исследовательской деятельности последствия антропогенного воздействия на экосистемы своего региона, предлагать способы снижения антропогенного воздействия на экосистемы;

 использовать приобретенные компетенции в практической деятельности и повседневной жизни, для приобретения опыта деятельности, предшествующей профессиональной, в основе которой лежит биология как учебный предмет.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА 10 КЛАСС

РАЗДЕЛ 1

Многообразие живого мира. Основные свойства живой материи (5 часов)

Тема 1.1. Уровни организации живой материи (2 часа)

Жизнь как форма существования материи; определения понятия «жизнь». Жизнь и живое вещество; косное и биокосное вещество биосферы. Уровни организации живой материи и принципы их выделения; молекулярный, субклеточный, клеточный, тканевый и органный, организменный, популяционно-видовой, биоценотический и биосферный уровни организации живого.

Тема 1.2. Критерии живых систем (3 часа)

Единство химического состава живой материи; основные группы химических элементов и молекул, образующие живое вещество биосферы. Клеточное строение организмов, населяющих Землю. Обмен веществ (метаболизм) и саморегуляция в биологических системах; понятие о гомеостазе как условии существования живых систем. Самовоспроизведение; наследственность и изменчивость как основа существования живой материи, их проявления на различных уровнях организации живого. Рост и развитие. Раздражимость; формы избирательной реакции организмов на внешние воздействия (безусловные и условные рефлексы; таксисы, тропизмы и настии). Ритмичность процессов жизнедеятельности; биологические ритмы и их адаптивное значение. Дискретность живого вещества и взаимоотношение части и целого в биосистемах. Энергозависимость живых организмов; формы потребления энергии.

Предметные результаты обучения.

На уровне запоминания:

- называть компоненты биосферы, их состав;
- характеризовать уровни организации живой материи;
- <u>воспроизводить</u> перечень химических, биологических и других дисциплин, представители которых занимаются изучением процессов жизнедеятельности на различных уровнях организации жизни.

На уровне понимания:

- <u>характеризовать</u> целостность живой природы, взаимосвязи и взаимозависимость всех компонентов биосферы;
- *приводить* примеры взаимосвязей процессов, протекающих на разных уровнях организации живого;
- *объяснять* зависимость жизнедеятельности каждого организма от всеобщих физических и химических законов.

На уровне применения в типичных ситуациях:

- уметь соотносить биологические процессы с теориями, их объясняющими.

На уровне применения в нестандартных ситуациях:

- *обобщать* полученные при изучении учебного материала сведения, *представлять* их в структурированном виде;
- обобщать наблюдаемые биологические явления и процессы на эмпирическом уровне.

РАЗДЕЛ 2

Возникновение жизни на Земле (2 часа)

Тема 2.1. История представлений о возникновении жизни (2 часа)

Мифологические представления. Представления Аристотеля, Эмпедокла и других античных ученых. Первые научные попытки объяснения сущности и процесса возникновения жизни. Опыты Ф.Реди, взгляды У.Гарвея, Д.Нидгема; эксперименты Л.Пастера. Теории вечности жизни Г.Рихтера и других ученых (Г.Гельмгольц, Г.Томсон, С.Аррениус, П.Лазарев). Материалистические представления о возникновении жизни на Земле. Предпосылки возникновения жизни на Земле: космические и планетарные предпосылки; химические предпосылки эволюции материи в направлении возникновения органических молекул: первичная атмосфера и эволюция химических элементов, неорганических и органических молекул на ранних этапах развития Земли.

Предметные результаты обучения.

На уровне запоминания:

- называть отдельные гипотезы древних и средневековых ученых о возникновении и развитии жизни на Земле;
- характеризовать предпосылки возникновения жизни на Земле;
- воспроизводить определения биологических понятий.

На уровне понимания:

- характеризовать целостность живой природы, взаимосвязь и взаимозависимость всех компонентов биосферы;
- приводить примеры связей в живой природе;
- объяснять зависимость жизнедеятельности каждого организма от всеобщих законов природы;

На уровне применения в типичных ситуациях:

- уметь соотносить биологические процессы с теориями, их объясняющими.

На уровне применения в нестандартных ситуациях:

- обобщать полученные при изучении учебного материала сведения, представлять их в структурированном виде;
- характеризовать материалистические представления о возникновении жизни и доказывать их справедливость.

Тема 2.2. Современные представления о возникновении жизни (2 часа)

Современные представления о возникновении жизни; взгляды Э.Пфлюгера, Дж.Элллена. Эволюция химических элементов в космическом пространстве. Образование планетных систем. Первичная атмосфера Земли и химические предпосылки возникновения жизни. Источники энергии и возраст Земли. Условия среды на древней Земле; теория А.Опарина, опыты С.Миллера. химическая эволюция. Небиологический синтез органических соединений.

Предметные результаты обучения.

На уровне запоминания:

- называть современные гипотезы возникновения жизни(взгляды Э.Пфлюгера,Дж.Эллена);
- характеризовать процессы элементной и молекулярной эволюции в космическом пространстве;
- воспроизводить определения биологических понятий.

На уровне понимания:

- характеризовать условия среды на древней Земле;
- объяснять механизм химической эволюции и небиологический синте органических соединений, зависимость жизнедеятельности каждого организма от всеобщих законов природы;
- -объяснять теорию А.И.Опарина, опыты С.Миллера.

На уровне применения в типичных ситуациях:

- уметь соотносить процессы, происходившие на древней Земле, с реакциями, воспроизводящими их в лабораторных условиях.

На уровне применения в нестандартных ситуациях:

- обобщать полученные сведения, представлять их в структурированном виде.
- оценивать адекватность модельных экспериментов для объяснения процесса возникновения живых систем из неживой материи.

Тема 2.3. Теории происхождения протобиополимеров (1час)

Термическая теория. Теория адсорбции. Значение работ С.Фокса и Дж.Бернала. низкотемпературная теория К.Симонеску и Ф.Денеша. Коацерватне капли и их эволюция. Теории происхождения протобиополимеров. Свойства коацерватов: реакции обмена веществ, самовоспроизведение. Гипотеза мира РНК. Эволюция протобионтов: формирование внутренней среды, появление катализаторов органической природы, эволюция энергетических систем и метаболизма; возникновение генетического кода.

Предметные результаты обучения.

На уровне запоминания:

- называть современные гипотезы о возникновении жизни (взгляды Э.Пфлюгера,Дж.Эллена);
- характеризовать термическую теорию С.Фокса, теорию адсорбции Дж.Бернала; воспроизводить определения биологических понятий;
- называть отдельные этапы доклеточной эволюции;
- характеризовать коацерватные капли и их эволюцию; теории происхождения протобиополимеров;
- воспроизводить определение биологических понятий и терминов;

На уровне понимания:

- характеризовать этапы эволюции протобионтов;
- объяснять эволюцию энергетических систем и процессов метаболизма;
- объяснять формирование внутренней среды организмов, возникновение генетического кода;
- -характеризовать гипотезу мира РНК.

На уровне применения в типичных ситуациях:

- уметь соотносить биологические процессы с теориями, их объясняющими.

На уровне применения в нестандартных ситуациях:

- обобщать полученные при изучении сведения и представлять их в структурированном виде;
- давать аргументированную критику идеалистических представлений о сущностии возникновении жизни.

Тема 2.4. Эволюция протобионтов (1 час)

Возникновение энергетических систем: роль пирофосфата. Образование полимеров; значение неспецифической каталитической активности полипептидов. Совершенствование метаболических реакций. Роль энергии солнечного света; возникновение фотосинтеза.

Предметные результаты обучения.

На уровне запоминания:

- называть отдельные этапы предбиологической эволюции;
- -характеризовать появление энергетических систем;
- -воспроизводить сущность гипотез возникновения биополимеров;

- воспроизводить определения биологических понятий;

На уровне понимания:

- характеризовать теорию симбиогенеза в происхождении эукариот;
- приводить примеры симбиотических связей в живой природе;

Объяснять механизмы возникновения энергетических систем и биополимеров;

На уровне применения в типичных ситуациях:

- уметь соотносить черты организации коацерватов и клеточных форм;

На уровне применения в нестандартных ситуациях:

- обобщать полученные при изучении сведения и представлять их в структурированном виде;

Тема 2.5. Начальные этапы биологической эволюции (1 час)

Начальные этапы биологической эволюции. Прокариотические клетки. Теория симбиогенетического происхождения эукариотической клетки и ее доказательства; возникновение фотосинтеза, эукариот, полового процесса и многоклеточности. Теории происхождения многоклеточных организмов (Э..Геккель, И.И.Мечников, А.В.Иванов).

Предметные результаты обучения.

На уровне запоминания:

- называть отдельные этапы предбиологической эволюции;
- характеризовать строение про- и эукариот
- -воспроизводить сущность гипотез возникновения многоклеточных;
- воспроизводить определения биологических понятий;

На уровне понимания:

- характеризовать теорию симбиогенеза в происхождении эукариот;
- приводить примеры симбиотических связей в живой природе;
- приводить доказательства теории симбиогенеза в происхождении эукариот;
- демонстрировать возможность сравнения гипотез возникновения многоклеточных.

На уровне применения в типичных ситуациях:

- уметь соотносить черты организации многоклеточных и колониальных форм;
- оценивать вклад представлений Э,Геккеля, И.И.Мечникова и А.В.Иванова встановлении современных представлений о происхождении многоклеточных организмов.

На уровне применения в нестандартных ситуациях:

- обобщать полученные при изучении сведения и представлять их в структурированном виде;
- обобщать сведения о биологических явлениях и процессах, наблюдаемых в ходе индивидуального и исторического развития животных.

РАЗДЕЛ 3

Химическая организация клетки (13 часов)

Тема 3.1. Неорганические вещества, входящие в состав клетки (1 час)

Элементарный состав живого вещества биосферы. Распространенность элементов, и их вклад в образование живой материи и объектов неживой природы. Макроэлементы, микроэлементы; их вклад в образование неорганических и органических молекул живого вещества. неорганические молекулы живого вещества. Вода, её химические свойства и биологическая роль: растворитель гидрофильных молекул, среда протекания биохимических превращений. Роль воды в компартментализации и межмолекулярных взаимодействиях, теплорегуляции и др. Соли неорганических кислот, их вклад в обеспечение процессов жизнедеятельности и поддержании гомеостаза. Роль катионов и анионов в обеспечении процессов жизнедеятельности. Осмос и осмотическое давление; осмотическое поступление молекул в клетку. Буферные системы клетки и организма.

Предметные результаты обучения.

На уровне запоминания:

- называть отдельные элементы, образующие молекулы живого вещества; характеризовать их вклад в образование неорганических и органических молекул;
- -характеризовать неоргшанические молекулы живого вещества: воду, соли неорганических кислот;
- воспроизводить определения биологических понятий.

На уровне понимания:

- характеризовать осмос и осмотическое давление;
- характеризовать буферные системы клетки и организма;
- объяснять роль воды в компартментализации, межмолекулярного взаимодействия и теплорегуляции;
- объяснять значение буферных систем клетки и организма в обеспечении гомеостаза.

На уровне применения в типичных ситуациях:

- объяснять биологическую роль воды как растворителя гидрофильных молекул;

Характеризовать воду как среду протекания биохимических превращений;

Объяснять роль воды в компартментализации и межмолекулярных взаимодействиях.

На уровне применения в нестандартных ситуациях:

- обобщать полученные при изучении учебного материала сведения и представлять их в структурированном виде;
- обобщать наблюдаемые биологические явления и выделять в них значение воды.

Тема 3.2. Органические вещества, входящие в состав клетки (12 часов)

Органические молекулы. Биологические полимеров – белки. Структурная организация молекул белка: первичная, варианты вторичной, третичная и четвертичная; химические удерживающие; фолдинг. Свойства белков: водорастворимость, термолабильность, поверхностный заряд и др.; денатурация (обратимая и необратимая), ренатурация – биологический смысл и практическое значение. Функции белковых молекул. Биологические катализаторы – белки, их классификация, свойства и роль в обеспечении процессов жизнедеятельности. Регуляторная информационно-И коммуникативная роль белков; транспортные и двигательные белки; антитела.

Углеводы в жизни растений, животных, грибов и микроорганизмов. Стркутурнофункциональные особенности организации моно- и дисахаридов. Строение и биологическая роль биополимеров – полисахаридов.

Жиры — основной структурный компонент клеточных мембран и источник энергии. Особенности строения жиров и липоидов, лежащие в основе их функциональной активности на уровне клетки и целостного организма.

Нуклеиновые кислоты. ДНК — молекулы наследственности; история изучения. Уровни структурной организации; структура полинуклеотидных цепей, правило комплементарности — правило Чаргаффа, двойная спираль (Дж.Уотсон и Ф.Крик); биологическая роль ДНК. Генетический код, свойства кода. Ген: структура и функции; гены, кодирующие РНК, мобильные генетические элементы. Геном; геном человека. РНК: информационные, транспортные, рибосомальные, каталитические и регуляторные. Редупликация ДНК, передача наследственной информации из поколения в поколение.

Предметные результаты обучения.

На уровне запоминания:

- называть органические молекулы,ю входящие в состав клетки;

Характеризовать биологические полимеры – белкаи;

Характеризовать структурную организацию белков;

Описывать углеводы и их роль в жизни растений, животных, грибов и микроорганизмов;

Описывать роль жиров как основных компонентов клеточных мембран и источника энергии;

Характеризовать НК – ДНК и РНК;

Воспоизводить определения биологических понятий.

На уровне понимания:

- характеризовать механизм биологического катализа с участием ферментов;
- объяснять уровни структурной организации ДНК: структуру полинуклеотидных цепей, правило комплементарности, двойную спираль (модель ДЖ. Уотсона и Ф. Крика);
- описывать генетический код и объяснять его свойства;

Характеризовать ген, его структуру и функции; гены, кодирующие РНК, мобильные генетические элементы.

На уровне применения в типичных ситуациях:

- объяснять механизм редупликации ДНК и сроение белков, синтезируемых в клетке.

На уровне применения в нестандартных ситуациях:

- обобщать полученные при изучении учебного материала сведения и представлять их в структурированном виде;
- обобщать наблюдаемые биологические явления и выявлять их биологический смысл.

РАЗДЕЛ 4

Реализация наследственной информации. Метаболизм (8 часов)

Тема 4.1. Анаболизм (6 часов)

Совокупность реакций биологического синтеза — пластический обмен, или анаболизм. Регуляция активности генов прокариот; оперон: опероны индуцибельные и репрессибельные. Регуляция активности генов эукариот. Структурная часть гена. Регуляторная часть гена: промоторы, энхансеры и инсуляторы. Передача наследственной информации из ядра в цитоплазму; транскрипция, транскрипционные факторы. Структура ДНК-связывающих белков. Процессинг РНК; сплайсинг, альтернативный сплайсинг, биологический смысл и значение. Механизм обеспечения синтеза белка; трансляция; ее сущность и механизм, стабильность иРНК и контроль экспрессии генов.

Каталитический характер реакции обмена веществ. Реализация наследственной информации: биологический синтез белков и других органических молекул в клетке.

Предметные результаты обучения.

На уровне запоминания:

- называть реакции биологического синтеза, составляющие пластический обмен;
- характеризовать оперон: опероны индуцибельные и репрессибельные;
- воспроизводить определения гена, структурной и регуляторной части гена;
- воспроизводить определения биологических понятий.

На уровне понимания:

- характеризовать механизм регуляции активности генов;
- *характеризовать* регуляторную часть гена эукариот: промоторы, энхансеры и инсуляторы; процессинг РНК, сплайсинг, их биологический смысл и значение;
- приводить примеры связей в живой природе;
- *объяснять* зависимость жизнедеятельноти каждого организма от всеобщих законов природы;
- описывать механизм обеспечения синтеза белка; трансляцию; ее сущность и механизм, стабильтнгость и-РНК и контроль экспрессии генов;
- *объяснять* механизм реализации наследственной информации: биологический синтез белков и др.биополимеров в клетке.

На уровне применения в типичных ситуациях:

- уметь соотносить биологические процессы с теориями, их объясняющими.

На уровне применения в нестандартных ситуациях:

- *обобщать* полученные при изучении учебного материала сведения и представлять их в структурированном виде;
- обобщать наблюдаемые биологические явления и процессы на эмпирическом уровне.

Тема 4.2. Энергетический обмен – катаболизм 91 час)

Энергетический обмен; структура и функции АТФ. Этапы энергетического обмена. Автотрофный и гетеротрофный тип обмена веществ. Анаэробное и аэробное расщепление органических молекул. Подготовительный этап, роль лизосом; неполное (бескислородное) расщепление. Полное кислородное окисление; локализация процессов в митохондриях. Сопряжение расщепления глюкозы в клетке с распадом и синтезом АТФ. Компартментализация процессов метаболизма и локализация специфических ферментов в мембранах определенных клеточных структур. Понятие о гомеостазе; принципы нервной и эндокринной регуляции процессов превращения веществ и энергии в клетке.

На уровне запоминания:

- описывать структуру и называть функции АТФ;

На уровне понимания:

<u>-</u> характеризовать полное кислородное окисление органических молекул; локализацию процессов энергетического обмена в митохондриях

На уровне применения в типичных ситуациях:

- уметь соотносить процессы метаболизма со структурами, их осуществляемыми.

На уровне применения в нестандартных ситуациях:

- *обобщать* полученные при изучении учебного материала сведения и представлять их в структурированном виде;

Тема 4.3. Автотрофный тип обмена (1 час)

Фотосинтез; световая фаза и особенности организации тилакоидов гран, энергетическая ценность. Темновая фаза фотосинтеза, процессы, в ней протекающие, использование энергии. Типы фотосинтеза и источники водорода для образования органических молекул; реакции световой и темновой фазы фотосинтеза. Хемосинтез.

На уровне запоминания:

- приводить отдельные реакции фотосинтеза, места протекания их в клетке;

На уровне понимания:

- характеризовать световую и темновую фазы фотосинтеза;

На уровне применения в типичных ситуациях:

- уметь соотносить процессы синтеза органических молекул и процессы образования ATФ при фотосинтезе;

На уровне применения в нестандартных ситуациях:

- *обобщать* полученные при изучении учебного материала сведения и представлять их в структурированном виде;

РАЗДЕЛ 5

Строение и функции клеток (16 часов)

Тема 5.1. Прокариотическая клетка (2часа)

Предмет и задачи цитологии. Методы изучения клетки: световая и электронная микроскопия; биохимические и иммунологические методы. Два типа клеточной организации: прокариотические и эукариотические клетки. Строение цитоплазмы бактериальной клетки; локализация ферментных систем и организация метаболизма у прокариот. Генетический аппарат бактерий; особенности реализации наследственной информации. Особенности жизнедеятельности бактерий: автотрофные и гетеротрофные бактерии; аэробные и анаэробные микроорганизмы. Спорообразование и его биологическое значение. Размножение; половой процесс у бактерий; рекомбинации. Место и роль прокариот в биоценозах.

Предметные результаты обучения.

На уровне запоминания:

- *называть* методы изучения клетки, строение цитоплазмы бактериальной клетки; На уровне понимания:
- характеризовать генетический аппарат бактерий, особенности реализации наследственной информации;

На уровне применения в типичных ситуациях:

- различать автотрофные и гетеротрофные, аэробные и анаэробные микроорганизмы На уровне применения в нестандартных ситуациях:
- *обобщать* полученные при изучении учебного материала сведения и представлять их в структурированном виде;
- обобщать наблюдаемые биологические явления и процессы на эмпирическом уровне.

Тема 5.2 Эукариотическая клетка (8 часов)

Цитоплазма эукариотической клетки. Мембранный принцип организации клеток; строение биологической мембраны, морфологические и функциональные особенности мембран различных клеточных структур. Органеллы цитоплазмы, их структура и функции. Наружная цитоплазматическая мембрана, ЭПС, аппарат Гольджи, лизосомы; механизм внутриклеточного пищеварения. Митохондрии — энергетические станции клетки; механизмы клеточного дыхания. Рибосомы и их участие в процессах трансляции. Клеточный центр. Органоиды движения: жгутики и реснички. Цитоскелет. Специальные органоиды цитоплазмы: сократительные вакуоли и др. взаимодействие органоидов в обеспечении процессов метаболизма.

Клеточное ядро – центр управления жизнедеятельностью клетки. Структуры клеточного оболочка, (гетерохроматин ядерная хроматин И эухроматин), ядрышко. состав И значение для Кариоплазма; химический жизнедеятельности Дифференциальная активность генов; эухроматин. Хромосомы. Структура хромосом в различные периоды жизненного цикла клетки; кариотип, понятие о гомологичных хромосомах. Диплоидный и гаплоидный наборы хромосом.

Предметные результаты обучения.

На уровне запоминания:

- называть принципы организации эукариот, характеризовать органеллы цитоплазмы, их структуры и функции; клеточного ядра и ядрышко;

На уровне понимания:

- характеризовать явление дифференцированной активности генов, эухроматин;
- На уровне применения в типичных ситуациях:
- уметь соотносить структуру хроматина с его биологической активностью
- На уровне применения в нестандартных ситуациях:
- *обобщать* полученные при изучении учебного материала сведения и представлять их в структурированном виде; *обобщать* наблюдаемые в клетке процессы.

Тема 5.3. Жизненный цикл клетки. Деление клеток (3 часа)

Клетки в многоклеточном организме. Понятие о дифференцировке клеток в многоклеточного организма. Жизненный цикл клеток. Ткани организма с разной скоростью клеточного обновления: обновляющиеся, растущие стабильные. Размножение клеток. Митотический цикл: интерфаза – период подготовки клетки к делению, редупликация ДНК; митоз, фазы митотического деления и преобразование хромосом в них. Механизм образования веретена деления и расхождения дочерних хромосом в анафазе. Биологический смысл митоза. Биологическое значение митоза (бесполое размножение, рост, восполнение клеточных потерь в физиологических и патологических условиях). Регуляция жизненного цикла клетки многоклеточного организма. Факторы роста. Запрограммированная клеточная гибель – апоптоз; регуляция апоптоза. Понятие о регенерации. Нарушения интенсивности клеточного размножения и заболевания человека и животных: трофические язвы, доброкачественные злокачественные опухоли и др.

Предметные результаты обучения.

На уровне запоминания:

- называть типы клеток в многоклеточном организме;
- -характеризовать митотический цикл, биологический смысл и биологическое значение митоза;

На уровне понимания:

- характеризовать дифференцировку клеток многоклеточного организма и ее механизмы; редупликацию ДНК, митоз, его фазы, веретена деления, регуляцию жизненного цикла, факторы роста;

На уровне применения в типичных ситуациях:

- *уметь соотносить* механизм клеточного размножения с процессами роста, физиологической и репаративной регенерацией;

На уровне применения в нестандартных ситуациях:

- *обобщать* полученные при изучении учебного материала сведения и представлять их в структурированном виде; знания о нарушениях интенсивности клеточного размножения и вызываемых ими заболеваниях человека и животных

Тема 5.4. Особенности строения растительных клеток (1 час)

Особенности строения растительных клеток; вакуоли и пластиды. Виды пластид; их структура и функциональные особенности. Клеточная стенка. Особенности строения Предметные результаты обучения.

На уровне запоминания:

- *называть* отдельные компоненты растительных клеток, отличающие их от клеток животных и грибов;

На уровне понимания:

- характеризовать виды пластид; их структуру и функциональные особенности.
- На уровне применения в типичных ситуациях:
- уметь соотносить в метаболизме клеток растений реакции анаболизма и катаболизма. На уровне применения в нестандартных ситуациях:
- - *обобщать* полученные при изучении учебного материала сведения и представлять их в структурированном виде; наблюдаемые в растительных клетках биологические явления и процессы на эмпирическом уровне.

Тема 5.5. Клеточная теория строения организмов (1 час)

Клеточная теория строения организмов. История развития клеточной теории; работы М.Шлейдена, Т.Шванна, Р.Броуна, Р.Вирхова и др.ученых. Основные положения клеточной теории; современное состояние клеточной теории строения организмов. Значение клеточной теории для развития биологии.

Предметные результаты обучения.

На уровне запоминания:

- называть отдельные положения клеточной теории;
- характеризовать историю развития клеточной теории;
- воспроизводить определения биологических понятий;

На уровне понимания:

- характеризовать

Тема 5.6. Неклеточная форма жизни. Вирусы (1 час)

Вирусы — внутриклеточные паразиты на генетическом уровне. Открытие вирусов, механизм взаимодействия вируса и клетки, инфекционный процесс. Вертикальный и горизонтальный тип передачи вирусов. Заболевание животных и растений, вызываемые вирусами. Вирусные заболевания, встречающиеся у человека: грипп, гепатит, СПИД. Бактериофаги. Происхождение вирусов. Меры профилактики распространения вирусных заболеваний.

РАЗДЕЛ 6

Размножение организмов (7 часов)

Тема 6.1 Бесполое размножение растений и животных (1 час)

Формы бесполого размножения: митотическое деление одноклеточных; спорообразование, почкование у одноклеточных и многоклеточных организмов; вегетативное размножение. Биологический смысл и эволюционное значение бесполого размножения.

Тема 6.2 Половое размножение (6 часов)

Половое размножение растений и животных; биологический смысл. Гаметогенез. Периоды образования половых клеток: размножение и рост. Период созревания (мейоз); профаза-1 и процессы, в ней происходящие: конъюгация, кроссинговер. Механизм, генетические последствия и биологический смысл мейоза. Период формирования половых клеток; сущность и особенности течения. Особенности сперматогенезаа и овогенеза. Осеменение и оплодотворение. Моно- и полиспермия; биологическое значение. Наружное и внутреннее оплодотворение. Партеногенез. Эволюционное значение полового размножения.

РАЗДЕЛ 7

Индивидуальное развитие организмов (онтогенез) (20 часов)

Тема 7.1 Краткие исторические сведения (1 час)

«История развития животных» К.М.Бэра и учение о зародышевых листках. Эволюционная эмбриология; работы А.О.Ковалевского, И.И.Мечникова и А.Н.Северцова. Современные представления о зародышевых листках. Принципы развития беспозвоночных и позвоночных животных.

Тема 7.2. Эмбриональный период развития (10 часов)

Типы яйцеклеток; полярность, распределение желтка и генетический детерминант. Оболочки яйца; активация оплодотворенных яйцеклеток к развитию. Основные закономерности дробления; тотипотентность бластомеров; образование однослойного зародыша – бластулы. Гаструляция; закономерности образования двуслойного зародыша – гаструлы. Зародышевые листки и их дальнейшая дифференцировка; гомология зародышевых листков. Первичный органогенез (нейруляция) и дальнейшая дифференцировка тканей, органов и систем. Регуляция эмбрионального развития; детерминация и эмбриональная индукция. Генетический контроль развития. Роль нервной и эндокринной систем в обеспечении эмбрионального развития организмов.

Тема 7.3 Постэмбриональный период развития (2 часа)

Закономерности постэмбрионального периода развития. Прямое развитие; дорепродуктивный, репродуктивный и пострепродуктивный периоды. Непрямое развитие; полный и неполный метаморфоз. Биологический смысл развития с метаморфозом. Стадии постэмбрионального развития при непрямом развитии (личинка, куколка, иммаго). Старение и смерть; биология продолжительности жизни.

Тема 7.4. Общие закономерности онтогенеза (1 час)

Сходство зародышей и эмбриональная дивергенция признаков (закон К.Бэра). Биогенетический закон (Э.Геккель и К.Мюллер). Работы академика А.Н.Северцова об эмбриональной изменчивости (изменчивость всех стадий онтогенеза; консервативность ранних стадий эмбрионального развития; возникновение изменений как преобразований стадий развития и полное выпадение предковых признаков).

Тема 7.5. Развитие организма и окружающая среда (4 часа)

Роль факторов окружающей среды в эмбриональном и постэмбриональном развитии организма. Критические периоды развития. Влияние изменений гомеостаза организма матери и плода в результате воздействия токсических веществ (табачного дыма, алкоголя, наркотиков и т.д.) на ход эмбрионального и постэмбрионального периодов развития (врожденные уродства).

Тема 7.6. Регенерация (2 часа)

Понятие о регенерации; внутриклеточная, клеточная, тканевая и органная регенерация. Физиологическая и репаративная регенерация. Эволюция способности к регенерации у позвоночных животных.

РАЗДЕЛ 8

Основные понятия генетики (2 часа)

Представления древних о родстве и характере передачи признаков из поколения в поколение. Взгляды средневековых ученых на процессы наследования признаков. История развития генетики. Основные понятия генетики. Признаки и свойства; гены, аллельные гены. Гомозиготные и гетерозиготные организмы. Генотип и фенотип организма; генофонд.

РАЗДЕЛ 9

Закономерности наследования признаков (12 часов)

Тема 9.1. Гибридологический метод изучения наследования признаков Г.Менделя (1 час)

Методы изучения наследственности и изменчивости. Чистая линия: порода, сорт. Принципы и характеристика гибридологического метода Г.Менделя. другие генетические методы: цитогенетический, генеалогический, методы исследования ДНК.

Тема 9.2. Законы Менделя (4 часа)

Закономерности наследования признаков, выявленные Г.Менделем. Моногибридное скрещивание. Первый закон Менделя — закон доминирования. Полное и неполное доминирование; множественный аллелизм. Второй закон Менделя — закон расщепления. Закон чистоты гамет и его цитологическое обоснование. Анализирующее скрещивание. Дигибридное и полигибридное скрещивание; третий закон Менделя — закон независимого комбинирования.

Тема 9.3. Хромосомная теория наследственности. Сцепленное наследование генов (2 часа)

Хромосомная теория наследственности. Группы сцепления генов. Сцепленное наследование признаков. Закон Т.Моргана. Полное и неполное сцепление генов; расстояние между генами; генетические карты хромосом.

Тема 9.4. Генетика пола. Наследование признаков, сцепленных с полом (1 час)

Генетическое определение пола; гомогаметный и гетерогаметный пол. Генетическая структура половых хромосом. Наследование признаков, сцепленных с полом. Генетические карты хромосом человека. Характер наследования признаков у человека. Генные и хромосомные аномалии человека и вызываемые ими заболевания. Меры профилактики наследственных заболеваний человека.

Тема 9.5. Генотип как целостная система. Взаимодействие генов (4 часа)

Генотип как целостная система. Взаимодействие аллельных (доминирование, неполное доминирование, кодоминирование и сверхдоминирование) и неаллельных (комплементарность, эпистаз и полимерия) генов в определении признаков. Плейотропия. Экспрессивность и пенетрантность гена.

РАЗДЕЛ 10

Закономерности изменчивости (6 часов)

Тема 10.1. Наследственная (генотипическая) изменчивость (4часа)

Основные формы изменчивости. Генотипическая изменчивость. Мутации. Генные, хромосомные и геномные мутации. Свойства мутаций; соматические и генеративные мутации. Нейтральные мутации. Полулетальные и летальные. Причины и частота мутаций; мутагенные факторы. Эволюционная роль мутаций; значение мутаций для практики сельского хозяйства и биотехнологии. Мутагенные факторы. Комбинативная изменчивость. Уровни возникновения различных комбинаций генов и их роль в создании генетического разнообразия в пределах вида (кроссинговер, независимое расхождение гомологичных хромосом в первом и дочерних хромосом во втором делении мейоза, оплодотворение). Эволюционное значение комбинативной изменчивости.

Тема 10.2. Зависимость проявления генов от условий внешней среды (фенотипическая изменчивость) (2 часа)

Фенотипическая, или модификационная, изменчивость. Роль условий внешней среды в развитии и проявлении признаков и свойств. Свойства модификаций: определенность условиями среды, направленность, групповой характер, наследуемость. Статистические закономерности модификационной изменчивости; вариационный ряд и вариационная кривая. Норма реакции; зависимость от генотипа. Управление доминированием.

РАЗДЕЛ 11

Основы селекции (5 часов)

Тема 11.1. Создание пород животных и сортов растений (1 час)

Создание пород животных и сортов растений. Разнообразие и продуктивность культурных растений. Центры происхождения и многообразия культурных растений. Закон гомологических рядов в наследственной изменчивости.

Тема 11.2. Методы селекции животных и растений (1 час)

Методы селекции растений и животных: отбор и гибридизация; формы отбора (индивидуальный и массовый). Отдаленная гибридизация; явление гетерозиса. Искусственный мутагенез.

Тема 11.3. Селекция микроорганизмов (1 час)

Селекция микроорганизмов. Биотехнология и генетическая инженерия. Селекция микроорганизмов для пищевой промышленности; получение лекарственных препаратов, биологических регуляторов, аминокислот.

Тема 11.4. Достижения и основные направления современной селекции (2 часа)

Достижения и основные направления современной селекции. Успехи традиционной селекции. Клонирование; терапевтическое клонирование. Дедифференциация соматических ядер в реконструированных клетках. Клеточные технологии. Генетическая инженерия. Значение селекции для развития сельскохозяйственного производства, медицинской, микробиологической и других отраслей промышленности.

- групповые;
- индивидуально-групповые;
- фронтальные;
- практикумы
- лабораторные работы
- практические работы
- -семинары
- -экскурсии
- -наблюдения
- -защита докладов, конспектов, планов
- -интерактивные уроки.

Виды учебной деятельности

- проектная

-исследовательская деятельность: умение видеть проблемы, ставить вопросы, классифицировать, наблюдать, проводить эксперимент, делать выводы, объяснять, доказывать, защищать свои идеи, давать определения понятиям, структурировать материал и т.д.

-коммуникативная учебная деятельность: умение полно и точно выражать свои мысли, аргументировать свою точку зрения, работать в группе, представлять и сообщать информацию в устной и письменной форме, вступать в диалог и т. д.

Тематическое планирование

(102 час, 3 часа в неделю)

№	Тема урокаГлава 1. Биология как наука.	Модуль программы воспитания «Школьный урок» Проект «Культурный	Кол-во часов По примерной программе 4 часа	Кол-во часов По рабочей програм ме
	Методы научного познания	дневник»: Кванториум- новейшая история нашей школы»		
2	Глава 2. Клетка.	День солидарности в борьбе с терроризмом	41 час	40
2.1	Тема 2.1. Химия клетки.	«Огонь мой друг, огонь мой враг»	10 часов	10
2.2	Тема 2.2. Структурно - функциональная организация клеток прокариот и эукариот.	День Российской науки (280- летия со дня основания Российской академии наук в 1724 г.)	10 часов	10
2.3	Тема 2.3. Обеспечение клеток энергией.	Проект «Без границ!» (волонтерство)	7 часов	7
2.4	Тема 2.4. Наследственная информация и её реализация в клетке.	Международный день борьбы с наркоманией	7 часов	7

2.5	Тема 2.5. Воспроизведение биологических систем.	«Школа – территория ЗОЖ» (по отдельному графику)	7 часов	7
3	Раздел 3. Организм.		57 часов	57
3.1	Тема 3. 1. Размножение организмов.	Школьный интеллектуальный марафон «Что? Где? Когда?» К дню химической безопасности подготовка проекта.	5 часов	5
3.2	Тема 3.2. Основы генетики.	«Большой поход» к Всемирному дню туризма	33 часа	33
3.3	Тема 3.3. Генетические основы индивидуального развития.	Международный день школьных библиотек	4 часа	4
3.4	Тема 3.4. Генетика человека.	Праздник Белых Журавлей	8 часов	8
3.5	Тема 3.5. Основы селекции.		7 часов	3
	Резерв времени	«Страна БЕЗопасности»	3 часа	3
	Контрольных работ		4	4
	Лабораторных работ		7	7
	Итого		105 часов	102