Контрольная работа

Тема «Применение производной».

Назначение работы: оценить уровень достижения планируемых результатов.

Планируемые результаты.

По окончании изучения темы обучающийся научится:

 исследовать функции и строить их графики с помощью производной; решать задачи с применением уравнения касательной к графику функции;

решать задачи на нахождение наибольшего и наименьшего значения функций на отрезке. обучающийся получит возможность:

углубить и развить представления об исследовании различных функции с помощью производной

Контрольная работа рассчитана на 45 минут. Каждый вариант контрольной работы содержит 7 заданий, различающихся уровнем сложности. В контрольной работе представлены задания разных уровней сложности: базового, повышенного, высокого.

Задания базового уровня сложности (№1–4), повышенного уровня сложности (№5-6) и высокого уровня сложности (№7).

Задания контрольной работы позволяют проверить перечень требований, предъявляемых к изучению темы «Применение производной»:

– учащиеся должны знать:

уравнение касательной к графику функции; определение критической точки функции; признаки: убывания и возрастания функции на интервале;

максимума и минимума функции; точки перегиба функции; план исследования функции для построения её графика;

план нахождения наибольшего и наименьшего значений функции на отрезке.

- основных видов деятельности:

уметь исследовать функцию и строить график с помощью производной;

уметь решать задачи на применение уравнения касательной к графику функции; уметь решать задач на нахождение наибольшего и наименьшего значения функции на отрезке.

Критерии оценивания заданий:

№	количество	критерий оценивания						
задания	баллов							
1	2	верно и полностью найдена интервалы монотонности и экстремумы функции						
	1	верно определенны интервалы монотонности функции, экстремумы функции не найдены, или указаны не верно						
	0	не приступал к решению задачи решено не верно						
2								
	0	не приступал к решению задачи либо приступал, но решение не соответствует критериям 1, 2 балла						
3	2	получен полный, правильный ответ с обоснованием всех ключевых этапов решения						
	1	приведена логически правильная последовательность шагов решения, возможна ошибка в вычислениях, которая влияет на правильность ответа						
	0	не приступал к решению задачи либо приступал, но решение не соответствует критериям 1, 2 балла						
4	2	получен полный, правильный ответ с обоснованием всех ключевых этапов решения						

	1	правильно составлена математическая модель задачи, но решение
		не законченно или возможна ошибка в вычислениях, которая
		влияет на правильность ответа
	0	не приступал к решению задачи либо приступал, но решение не
		соответствует критериям 1, 2 балла
5	4	получен полный, правильный ответ с обоснованием всех ключевых
		этапов решения, правильно выполнено его решение, найден
		правильный ответ на оба пункта
	3	верно найдены интервалы монотонности и экстремумы функции
		или интервалы монотонности и наибольшее (наименьшее)
		значение функции на отрезке
	2	верно найдены интервалы монотонности или наибольшее и
		наименьшее значение функции на отрезке
	1	верно найдена производная сложной функции
	0	не приступал к решению задачи либо приступал, но решение не
		соответствует критериям 1, 2, 3, 4 балла
6	3	получен полный, правильный ответ с обоснованием всех ключевых
		этапов решения
	2	2 приведена логически правильная последовательность шагов
		решения, получен ответ с обоснованием, но рассмотрены не все
		возможные варианты
	1	1 верно найдена точка касания касательной к графику функции
	0	0 не приступал к решению задачи либо приступал, но решение не
		соответствует критериям 1, 2, 3 балла
7	3	получен полный, правильный ответ с обоснованием всех ключевых
		этапов решения
	2	приведена логически правильная последовательность шагов
		решения, верно выполнен и обоснован переход к квадратному
		неравенству, но возможны описки при его решении, которые не
		влияют на правильность ответа
	1	правильно указан признак возрастания функции, верно выполнен и
		обоснован переход к квадратному неравенству с параметром, но
		решение задачи не доведено до конца
	0	не приступал к решению задачи либо приступал, но решение не
		соответствует критериям 1, 2, 3 балла

	1 1			
Количество	0 - 7 баллов	8 – 12 баллов	13 -15 баллов	16 – 18 балла
баллов,				
полученное за				
работу				
Отметка по 5-ти	«2»	«3»	«4»	«5»
балльной шкале				

11010 10111	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	одоржания, пр	овериенивии в ког	iipoiibiioii paooit	
$N_{\overline{0}}$	Уровень	Тип задания	Код	Содержание	Максима
задания	сложности	(KO –	проверяемого	проверяемого	льный балл
		краткий	элемента	элемента	за
		ответ, РО –			выполнение
		задание с			задания

		развернутым			
		ответом)			
1	Б	PO	4.1.4 4.1.5 4.2.1 3.2.1 3.2.5	Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функции и построению графика функции. Монотонность функции. Промежутки возрастания и убывания. Точки экстремума.	2
2	Б	PO	4.1.4 4.1.5 4.2.1	Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функции и построению графика функции.	2
3	Б	PO	4.1.4 4.1.5 3.2.6 4.2.1	Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функции и построению графика функции. Наибольшее и наименьшее значение функции.	2
4	Б	PO	4.1.4 4.1.5 4.2.2	Производные суммы, разности, произведения, частного.	2

				Производные основных элементарных функций. примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально - экономических, задачах	
5	П	PO	4.1.4 4.1.5 4.2.1 3.2.1 3.2.5 3.2.6	Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функции и построению графика функции. Монотонность функции. Промежутки возрастания и убывания. Точки экстремума. Наибольшее и наименьшее значение функции.	4
6	П	PO	4.1.1 4.1.4 4.1.5 4.1.3	Понятие о производной функции, геометрический смысл производной. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Уравнение касательной к графику функции.	3
7	В	PO	4.1.4 4.1.5 4.2.1 2.2.1	Производные суммы, разности, произведения, частного. Производные	3

	основных элементарных функций. Применение производной к исследованию функции и построению графика функции. Квадратные	
	неравенства.	

Вариант О

- 1. Исследуйте функцию $f(x) = \frac{x^3}{3} \frac{x^2}{2} 2x + 3$ на монотонность и экстремумы.
- 2. Исследуйте функцию $y = \frac{12x}{9+x^2}$ и постройте ее график.
- 3. Найдите наименьшее и наибольшее значения функции $f(x) = 2x^3 + 9x^2 24x + 1$ на отрезке [-2;1].
- 4. Число 180 представьте в виде суммы трех положительных слагаемых так, чтобы два из них были пропорциональны числам 1 и 2, а произведение этих чисел было наибольшем.
 - 5. Дана функция $f(x) = \sqrt{-x^2 + 4x + 12}$. Найдите:
 - а) промежутки монотонность и экстремумы функции;
 - б) наименьшее и наибольшее значения функции на отрезке [0;3].
- 6. Составить уравнение всех касательных к графику функции $f(x) = x^3 3x + 2$, параллельных заданной прямой y = 3 x.
- 7. При каком значении параметра а функция $f(x) = 2x^3 3(a+2)x^2 + 48ax + 6x 2$ возрастает на всей числовой прямой?

Контрольная работа

Тема «Первообразная и интеграл».

Назначение работы: оценить уровень достижения планируемых результатов.

Планируемые результаты.

По окончании изучения темы обучающийся научится:

– находить первообразные элементарных функций, вычислять неопределенные интегралы с помощью замены переменной и интегрирования по частям, применять формулу Ньютона -Лейбница для вычисления определенных интегралов;

вычислять площадь криволинейной трапеции и объем тел вращения;

обучающийся получит возможность:

– решать некоторые задачи физики и геометрии, требующие интегрирования или дифференцирования функции .

Контрольная работа рассчитана на 45 минут. Каждый вариант контрольной работы содержит 7 заданий, различающихся уровнем сложности. В контрольной работе представлены задания разных уровней сложности: базового, повышенного, высокого. Задания базового уровня сложности (№1–4), повышенного уровня сложности (№5-6) и высокого уровня сложности (№7). Задания контрольной работы позволяют проверить перечень требований, предъявляемых к изучению темы «Первообразная и интеграл»:

– учащиеся должны знать: определение первообразной функции; правила нахождения первообразных;

определение криволинейной трапеции, формулу нахождения её площади; формулу Ньютона- Лейбница; формулу объёма тела вращения.

– основных видов деятельности: уметь находить первообразные элементарных функций; вычислять площадь криволинейной трапеции и объем тел вращения.

Критерии оценивания заданий:

No	герии оценива количество	
		критерии оценивания
задания	баллов 2	
1	2	верно и полностью приведено доказательство предложенного
	1	факта, с обоснованием всех ключевых этапов решения
	1	приведена логически правильная последовательность шагов
		решения, некоторые ключевые моменты решения обоснованы
		недостаточно возможны описки в вычислениях, которые не влияют
		на правильность ответа
	0	не приступал к решению задачи решено не верно
2	2	получен полный, правильный ответ с обоснованием всех ключевых этапов решения
	1	приведена логически правильная последовательность шагов
		решения, но ответ отличается от верного отсутствием константы
	0	не приступал к решению задачи либо приступал, но решение не
		соответствует критериям 1, 2 балла
3	2	получен полный, правильный ответ с обоснованием всех ключевых
	_	этапов решения
	1	верно найдена первообразная данной функции в общем виде, но
		решение не доведено до конца
	0	не приступал к решению задачи либо приступал, но решение не
		соответствует критериям 1, 2 балла
4	2	получен полный, правильный ответ с обоснованием всех ключевых
•		этапов решения
	1	правильно построена фигура, площадь которой нужно найти и
	1	составлена формула для ее нахождения. Возможны ошибки в
		вычислениях площади фигуры, которые влияют на правильность
		ответа.
	0	не приступал к решению задачи либо приступал, но решение не
		соответствует критериям 1, 2 балла
5	3	получен полный, правильный ответ с обоснованием всех ключевых
3		этапов решения
	2	приведена логически правильная последовательность шагов
		решения, но ответ отличается от верного отсутствием константы
	1	в правильной последовательности хода решения отсутствуют
	1	некоторые этапы. Возможны ошибки в вычислениях или
		преобразованиях, которые влияют на дальнейший ход решения.
		Полученный ответ может быть неправильным или неполным.
	0	
	0	не приступал к решению задачи либо приступал, но решение не соответствует критериям 1, 2, 3
6	3	получен полный, правильный ответ с обоснованием всех ключевых
U	3	
	2	этапов решения
	<u> </u>	приведена логически правильная последовательность шагов
		решения, но возможны вычислительные ошибки при нахождении
	1	площади фигуры, которые влияют на правильность ответа
	1	1 правильно построена фигура, площадь которой нужно найти и
		составлена формула для ее нахождения, но решение не доведено до

		конца или неправильно вычисляется определенный интеграл					
	0	0 не приступал к решению задачи либо приступал, но решение не					
		соответствует критериям 1, 2, 3 балла					
7	3	получен полный, правильный ответ с обоснованием всех ключевых					
		этапов решения					
	2	приведена логически правильная последовательность шаг					
		решения, верно выполнен и обоснован переход к нахождению					
		площади криволинейной трапеции, но возможны описки при ее					
		нахождении, которые влияют на правильность ответа					
	1	правильно преобразовано подкоренное выражение и построен					
		график функции, но решение задачи не доведено до конца					
	0	не приступал к решению задачи либо приступал, но решение не					
		соответствует критериям 1, 2, 3 балла					

Количество	0 – 9баллов	10-14 баллов	15-19 баллов	20-22 балла
баллов,				
полученное за				
работу				
Отметка по 5-ти	«2»	«3»	«4»	«5»
балльной шкале				

№	Уровень	Тип задания	Код	Содержание проверяемого	Максима
задания	сложности	(КО –	проверяе	элемента	льный балл
		краткий	мого		за
		ответ, РО –	элемента		выполнение
		задание с			задания
		развернутым			
		ответом)			
1	Б	PO	4.3.1	Первообразная	2
			4.1.4	элементарных функций.	
			4.1.5	Производные основных	
				элементарных функций.	
				Производные суммы,	
				разности, произведения,	
				частного.	
2	Б	PO	4.3.1	Первообразная	2+2
				элементарных функций.	
3	Б	PO	4.3.1	Первообразная	2
				элементарных функций.	
4	Б	PO	4.3.1	Первообразная	2
			4.3.2	элементарных функций.	
			3.3.3	Примеры применения	
				интеграла в физике и	
				геометрии. Квадратичная	
				функция, ее график	
5	П	PO	4.3.1	Первообразная	3+3
				элементарных функций.	
6	П	PO	4.3.1	Первообразная	3
			4.3.2	элементарных функций.	
			3.3.3	Примеры применения	

				интеграла в физике и геометрии. Квадратичная функция, ее график.	
7	В	PO	4.3.1 4.3.2	Первообразная элементарных функций. Примеры применения интеграла в физике и геометрии.	3

Вариант 0

- 1. Докажите, что функция $F(x)=\frac{1}{5}x^5+4x^2+\operatorname{tg} 2x$ -3 является первообразной для функции $f(x)=x^4+8x+\frac{2}{(\cos 2x)^2},\ x\neq \frac{\pi}{4}+\frac{\pi n}{2},\ n\in \mathbb{Z}$
 - 2. Найдите первообразную для функций: a)f(x)=2sin $x+(2x-5)^2$, $x\in R$; 6)f(x)=4 $e^x+\frac{1}{x^3}$, $x\neq 0$.
- 3. Для данной функции $y = \frac{10}{2x+5} + \frac{4}{x^2}$ найдите ту первообразную, график которой проходит через точку A(-2;0).
 - 4. Найдите площадь фигуры, ограниченной линиями $y=-x^2-4x,y=1$,x=-3,x=-1.
 - 5. Найдите неопределенный интеграл: a) $\int \frac{1+(sinx)^2}{1-\cos 2x} dx$,б) $\int \frac{dx}{1+4x^2}$
 - 6. Вычислите площадь фигуры, ограниченной линиями $y=x^2+2|x|-8$, $y=4-x^2$
 - 7. Вычислите: $\int_{-4}^{-2} \sqrt{6x x^2 5} dx$.

Контрольная работа

Тема «Иррациональные. Показательные, логарифмические неравенства»

Назначение работы: оценить уровень достижения планируемых результатов. Планируемые результаты. По окончании изучения темы обучающийся научится:

– решать более сложные неравенства с модулем;

использовать обобщенный метод интервалов при решении более сложных неравенств; обучающийся получит возможность:

- подготовиться к решению сложных задач из ЕГЭ;
- применить изученные методы решения уравнений и неравенств при решении более сложных задач с параметром .

Контрольная работа рассчитана на 45 минут. Каждый вариант контрольной работы содержит 7 заданий, различающихся уровнем сложности. В контрольной работе представлены задания разных уровней сложности: базового, повышенного, высокого. Задания базового уровня сложности (№1–4), повышенного уровня сложности (№5-6) и высокого уровня сложности (№7). Задания контрольной работы позволяют проверить перечень требований, предъявляемых к изучению темы «Уравнения. Неравенства»:

– учащиеся должны знать: какие преобразования приводят к равносильным уравнениям, а какие к уравнениям-следствиям;

что при решении неравенств можно выполнять только равносильные преобразования; что при возведении в натуральную степень обеих частей уравнения получается уравнение – следствие;

различные методы решения более сложных уравнений и неравенств.

– основных видов деятельности: уметь выполнять равносильные преобразования уравнений; при неравносильных преобразованиях уметь сводить решение к уравнению-следствию с последующей проверкой, к решению системы, равносильной уравнению, к решению преобразованного уравнения на том множестве, на котором оно равносильно исходному уравнению.

Критерии оценивания заданий:

No	терии оценив количество	критерий оценивания
задания	баллов	критерии оценивания
1	2	получен полный, правильный ответ с обоснованием всех ключевых
1	_	этапов решения
	1	верно и обосновано выполнен переход к тригонометрическому
	1	уравнению, при решении которого допущена вычислительная
		ошибка, которая повлияла на правильность ответа.
	0	не приступал к решению задачи решено не верно
2	2	получен полный, правильный ответ с обоснованием всех ключевых
2	2	этапов решения
	1	верно и обосновано выполнен переход к совокупности двух систем
	1	неравенств, при решении которых допущена вычислительная
		ошибка, которая повлияла на правильность ответа.
	0	
	U	не приступал к решению задачи либо приступал, но решение не
3	2	соответствует критериям 1, 2 балла получен полный, правильный ответ с обоснованием всех ключевых
3	2	_
	1	этапов решения
	1	верно и обосновано выполнено раскрытие модуля на промежутках
		и переход к решению более простых уравнений на заданном
		интервале, при решении которого допущена вычислительная
	0	ошибка, которая повлияла на правильность ответа.
	U	не приступал к решению задачи либо приступал, но решение не соответствует критериям 1, 2 балла
4	2	получен полный, правильный ответ с обоснованием всех ключевых
4	2	этапов решения
	1	верно и обосновано выполнен переход к системе неравенств, при
	1	решении которой допущена вычислительная ошибка, которая
		повлияла на правильность ответа.
	0	не приступал к решению задачи либо приступал, но решение не
	O .	соответствует критериям 1, 2 балла
5	3	получен полный, правильный ответ с обоснованием всех ключевых
3	3	этапов решения
	2	обоснованно получен ответ, отличающийся от верного
	2	исключением точки
	1	приведена логически правильная последовательность шагов
	1	решения, верно выполнен и обоснован переход к более простому
		рациональному неравенству, но получен неверный ответ из-за
		вычислительной ошибки.
	0	не приступал к решению задачи либо приступал, но решение не
	U	соответствует критериям 1, 2, Збалла
6	3	получен полный, правильный ответ с обоснованием всех ключевых
Ü]	этапов решения
	2	верно и обосновано выполнено раскрытие модуля на промежутках
	_	и переход к решению более простых уравнений на заданном
		и переход к решению облее простых уравнении на заданном интервале, при решении которого допущена вычислительная
		иптервале, при решении которого допущена вычислительная

		ошибка, которая повлияла на правильность ответа.					
	1	приведена логически правильная последовательность шагов					
		решения, получен ответ с обоснованием, но рассмотрены не все					
		возможные варианты раскрытия модуля.					
	0	не приступал к решению задачи либо приступал, но решение не					
		соответствует критериям 1, 2, 3 балла					
7	3	получен полный, правильный ответ с обоснованием всех ключевых					
		этапов решения					
	2	приведена логически правильная последовательность метода					
		интервалов или верно выполнен и обоснован переход к					
		совокупности двух систем, но возможны описки при их решени					
	которые не влияют на правильность ответа						
	1	в правильной последовательности хода решения отсутствуют					
		некоторые этапы, некоторые ключевые моменты решения					
		обоснованы недостаточно; возможны вычислительные ошибки,					
		которые влияют на правильность ответа					
	0	не приступал к решению задачи либо приступал, но решение не					
		соответствует критериям 1, 2, 3 балла					

Количество	0 – 9баллов	10-13 баллов	14-16 баллов	17-19 баллов
баллов,				
полученное за				
работу				
Отметка по 5-ти	«2»	«3»	«4»	«5»
балльной шкале				

No	Уровень	Тип задания	Код	Содержание	Максима
задания	сложности	(KO –	проверяемого	проверяемого	льный балл
		краткий	элемента	элемента	за
		ответ, РО -			выполнение
		задание с			задания
		развернутым			
		ответом)			
1	Б	PO	2.1.5	Показательные	2+2
			1.3.1 2.1.1	уравнения. Логарифм	
				числа. Квадратное	
				уравнение	
2	Б	PO	2.2.4	Логарифмические	2
			2.2.7	неравенства.	
				Равносильность	
				неравенств, систем	
				неравенств.	
3	Б	PO	2.1.5	Показательные	2
			2.1.7	уравнения.	
				Равносильность	
				уравнений, систем	
				уравнений.	
4	Б	PO	2.2.7	Равносильность	2
			2.2.6	неравенств, систем	
				неравенств. Системы	

				неравенств с одной переменной.	
5	П	PO	2.2.3 2.2.2 2.2.9	Показательные неравенства. Рациональные неравенства. Метод интервалов.	3
6	П	PO	2.1.4 2.1.7	Логарифмические уравнения. Равносильность уравнений, систем уравнений.	3
7	В	PO	2.2.9 2.2.7	Метод интервалов. Равносильность неравенств, систем неравенств.	3

Вариант 0

1. Решите уравнения:

a)
$$25^{\frac{\left|x^2+x\right|}{2}} = 5^{3\frac{\log_1\left(\frac{1}{3x}\right)}{3}}$$
, 6) $\left(10^{x^2+x}-1\right)\sqrt{\frac{1}{4}x-0,25} = 0$.

- 2. Решите неравенство $\log_{x+1}(3x-2) \prec (+4)$
- 3. Решите уравнение $|2^x 8| + |x 5| = 2^x x 5$.
- 4. Решите неравенство $\frac{\log_{0,3}(x-1)}{\sqrt{8-2x-x^2}} \le 0$.
- 5. Решите неравенство $\frac{9^x}{9^x 3} + \frac{9^x + 1}{9^x 2} + \frac{5}{81^x 5 \cdot 9^x + 6} \le 0.$
- 6. Решите уравнение $\sqrt{2\cos x} + \frac{|1 2\cos x|}{1 2\cos x} \sin 2x = 0$
- 7. Решите неравенство $\frac{\log_2(2 \cdot 4^x 11 \cdot 2^x + 9)}{x + 3} \le 1$.

Контрольная работа

Тема «Системы уравнений».

Назначение работы: оценить уровень достижения планируемых результатов. Планируемые результаты. По окончании изучения темы обучающийся научится:

– решать более сложные системы уравнений различными методами; использовать различные свойства функций при решении уравнений и неравенства;

обучающийся получит возможность:

- использовать рациональные приемы решения систем уравнений;
- подготовиться к решению сложных задач из ЕГЭ;

– применить изученные методы решения уравнений и неравенств, а так же их систем при решении более сложных задач с параметром .

Контрольная работа рассчитана на 45 минут. Каждый вариант контрольной работы содержит 7 заданий, различающихся уровнем сложности. В контрольной работе представлены задания разных уровней сложности: базового, повышенного, высокого. Задания базового уровня сложности (№1–4), повышенного уровня сложности (№5-6) и высокого уровня сложности (№7). Задания контрольной работы позволяют проверить перечень требований, предъявляемых к изучению темы «Системы уравнений»:

- учащиеся должны знать: приемы решения уравнений и неравенств с использованием свойств функций, входящих в уравнение; основные понятия связанные с системами уравнений с несколькими переменными; основные методы решения систем уравнений;
- основных видов деятельности: уметь применять свойства функций при решении уравнений и неравенств; решать системы уравнений с несколькими переменными различными методами. Критерии оценивания заданий:

	различными методами. Критерии оценивания заданий:				
$N_{\underline{0}}$	количество	критерий оценивания			
задания	баллов				
1	2	получен полный, правильный ответ с обоснованием всех ключевых			
		этапов решения			
	1	верно и обосновано выполнен переход к решению простейшего			
		линейного уравнения, при решении которого допущена			
		вычислительная ошибка, которая повлияла на правильность ответа.			
	0	не приступал к решению задачи решено не верно			
2	2	получен полный, правильный ответ с обоснованием всех ключевых			
		этапов решения			
	1	решение содержит вычислительную ошибку, возможно,			
		приведшую к неверному ответу, но при этом имеется верная			
		последовательность всех шагов решения			
	0	не приступал к решению задачи либо приступал, но решение не			
		соответствует критериям 1, 2 балла			
3	2	получен полный, правильный ответ с обоснованием всех ключевых			
		этапов решения			
	1	получен правильный ответ, но решение не достаточно обосновано.			
	0	не приступал к решению задачи либо приступал, но решение не			
		соответствует критериям 1, 2 балла			
4	2 получен полный, правильный ответ с обоснованием всех кл				
		этапов решения			
	1	верно выполнена замена переменной и переход к более простой			
		системе уравнений, которая правильно решена, но при обратной			
		замене и решении исходной системы допущена вычислительная			
		ошибка, которая повлияла на правильность ответа.			
	0	не приступал к решению задачи либо приступал, но решение не			
		соответствует критериям 1, 2 балла			
5	3	получен полный, правильный ответ с обоснованием всех ключевых			
		этапов решения			
	2	свели решение к рассмотрению двух систем уравнений, при			
		решении одной из которых допущена вычислительная ошибка,			
		которая повлияла на правильность ответа.			
	1	правильно выразили переменную х через у и свели решение к			

		рассмотрению двух систем уравнений, решения которых не закончены.					
	0	не приступал к решению задачи либо приступал, но решение не соответствует критериям 1, 2, 3 балла					
6	3	получен полный, правильный ответ с обоснованием всех ключевых этапов решения					
	2	верно и обосновано выполнен переход к системе уравнений, при решении которых допущена вычислительная ошибка, которая повлияла на правильность ответа.					
	1 получен правильный ответ, но решение не достаточно обо						
	0	не приступал к решению задачи либо приступал, но решение не соответствует критериям 1, 2, 3 балла					
7	3	получен полный, правильный ответ с обоснованием всех ключевых этапов решения					
	2	С помощью верного рассуждения получены все граничные точки множества значений а					
	1	1 Задача сведена к исследованию функции $f(t)=3^t+\sqrt[3]{t}$ f t, получено уравнение $x^2+x=a-x$, но решение не законченно.					
	0	0 не приступал к решению задачи либо приступал, но решение не соответствует критериям 1, 2, 3 балла					

Количество	0 – 7 баллов	8 – 10 баллов	11 - 14 баллов	15 - 17 баллов
баллов,				
полученное за				
работу				
Отметка по 5-ти	«2»	«3»	«4»	«5»
балльной шкале				

№	Уровень	Тип задания	Код	Содержание	Максима
задания	сложности	(KO –	проверяемо	проверяемого элемента	льный балл
		краткий	го элемента		за
		ответ, РО -			выполнение
		задание с			задания
		развернутым			
		ответом)			
1	Б	PO	3.3.6	Показательная функция,	2
			3.3.7	ее график.	
			2.1.10	Логарифмическая	
				функция, ее график.	
				Использование свойств	
				и графиков функций	
				при решении уравнений.	
2	Б	PO	2.2.4	Логарифмические	2
			2.2.7	неравенства.	
			2.2.9	Равносильность	
				неравенств, систем	
				неравенств. метод	

			интервалов.	
Б	PO	2.1.10 3.2.4	Использование свойств и графиков функций при решении уравнений. Ограниченность	2
Б	PO	2.1.9 2.1.3	Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Иррациональные	2
П	PO	2.1.9 2.1.6 2.2.9	Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Логарифмические	3
П	PO	2.1.10 3.2.4	Использование свойств и графиков функций при решении уравнений. Ограниченность	3
В	PO	2.1.10 3.2.1 2.1.1 Использова ние свойств и графиков функций при решении уравнений. Монотонно сть функции. Квадратные		3
	П	Б PO П PO П PO	В РО 2.1.10 3.2.1 Использова ние свойств и графиков функций при решении уравнений. Монотонно сть функции.	В РО 2.1.10 3.2.4 и графиков функций при решении уравнений. Ограниченность функций. В РО 2.1.9 2.1.3 Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Иррациональные уравнения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Логарифмические уравнения Использование свойств и графиков функций при решении уравнений. Ограниченность функций при решении уравнений при решении уравнений. Монотонно сть функции. Квадратные

Вариант 0

- 1. Решите уравнения: $\log_3(x+63) = 2^{20-x}$
- 2. Решите неравенство $\frac{\sqrt{1-x^2}\log_{0,2}(4x+2)}{x+3} \le 0$
- 3. Решите уравнение $3 + 2\sin^2 x = \log_3(27 x^2)$
- 4. Решите систему уравнений:

$$\begin{cases} xy(x+y) = 8, \\ x^3 + y^3 = 40. \end{cases}$$

- 5. Решите систему уравнений: $\begin{cases} \frac{5x-4y}{\sqrt{x-y+3}} = 2x+5y-6, \\ \log_2(x^2-2x(y-1)+y^2-2y-2) = 0; \end{cases}$
- 6. Решите неравенство $\left(x^2 + 4x + 3\right) \log_{\frac{1}{2}} \left(1 + \cos^2 \frac{\pi x}{4}\right) \ge 1$
- 7. Найдите все значения параметра а, при которых уравнение $3^{x^2+x} + \sqrt[3]{x^2+x} = 3^{a-x} + \sqrt[3]{a-x}$ имеет ровно один корень.