МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ УЧЕБНО-ВОСПИТАТЕЛЬНЫЙ КОМПЛЕКС «ШКОЛЬНАЯ АКАДЕМИЯ ИМЕНИ МАЛЬЦЕВА АЛЕКСАНДРА ИВАНОВИЧА» ГОРОДА БАХЧИСАРАЙ РЕСПУБЛИКИ КРЫМ

Контрольно-измерительные материалы к рабочей программе по физике

Класс 11 Всего часов 68 Количество часов в неделю 2

Составлена в соответствии с программой: Федеральная рабочая программа среднего общего образования. Физика (базовый уровень), для 10-11 классов образовательных организаций: ФГБНУ «Институт стратегии развития образования». Москва - 2023

Учебник: Физика. 11 класс: учеб. для общеобразоват. организаций с прил. на электрон. носителе: базовый уровень / Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чаругин под ред. Н.А. Парфентьевой – М. : Просвещение, 2022

Учитель (или группа учителей): Фамилия Осипова Имя Майя Отчество Владимировна Категория высшая Стаж работы 30 лет

Тематическое планирование учебного материала по физике 11 класс

2 урока в неделю, всего 68 уроков

		Количество часов			
№ п/п	Наименование разделов и тем программы	Всего	Контрольные работы	Практические (лабораторные) работы	
1	Электродинамика	11	1	2	
2	Колебания и волны. Основы специальной теории относительности	28	2	4	
3	Квантовая физика	15	1		
4	Элементы астрономии и астрофизики	7			
5	Обобщающее повторение. Резерв времени	7	1		
	Общее количество часов по программе	68	5	6	

Контрольная работа №1 по теме «Магнитное поле. Электромагнитная индукция»

Назначение КИМ: осуществить объективную индивидуальную оценку учебных достижений по физике. Контрольная работа составлена в соответствии с рабочей программой по физике для 11 класса.

Структура КИМ:

Контрольная работа состоит из 2 вариантов и содержит: № 1-7 — тестовая часть; №8-9 — задание на соответствие; № 10 — расчетная задача.

Время выполнения заданий: контрольная работа рассчитана на один урок (45 минут).

Инструкция по выполнению тестов:

При вычислении расчетов разрешается использовать непрограммируемый калькулятор.

Оценивание заданий частей 1-9

За выполнение задания 1-7 учащийся получает 1 балл, если выбранный им ответ совпадает с указанным в таблице ответом.

За выполнение задания 8-9 учащийся получает 2 балла, если записанный им набор цифр совпадает с указанным в таблице; 1 балл, если в ответе имеется хотя бы одна ошибка; 0 баллов, если ошибок более одной.

Общие правила оценивания задания 10

- ➤ За выполнение задания 10 учащийся получает 3 балла, если в решении присутствуют правильно выполненные следующие элементы:
 - правильно записаны необходимые для решения уравнения (законы);
- правильно выполнены алгебраические преобразования и вычисления, записан верный ответ.

учащийся имеет право:

доводить решение до конца в общем виде, а затем подставлять числовые данные, или делать промежуточные вычисления;

> задание оценивается 2 баллами, если

-сделана ошибка в преобразованиях или в вычислениях

или

- при верно записанных исходных уравнениях отсутствуют преобразования или вычисления.

> задание оценивается 1 баллом, если

- сделана ошибка в одном из исходных уравнений

ипи

-одно из необходимых исходных уравнений отсутствует.

Во всех остальных случаях ставится оценка 0 баллов.

Критерии оценивания

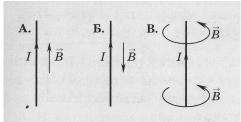
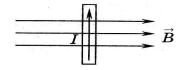

Максимальное количество баллов – 14

Таблица перевода баллов в отметку


Число баллов	0-3	4-7	8-11	12-14
Оценка	2	3	4	5

Вариант 1

- 1. Чем объясняется взаимодействие двух параллельных проводников с постоянным током?
 - 1) взаимодействие электрических зарядов;
 - 2) действие электрического поля одного проводника с током на ток в другом проводнике;
 - 3) действие магнитного поля одного проводника на ток в другом проводнике.
- 2. На какую частицу действует магнитное поле?
 - 1) на движущуюся заряженную;
 - 2) на движущуюся незаряженную;
 - 3) на покоящуюся заряженную;
 - 4) на покоящуюся незаряженную.
- **3**. На каком из рисунков правильно показано направление индукции магнитного поля, созданного прямым проводником с током.
 - 1) A; 2) Б; 3) В.

- **4.** Прямолинейный проводник длиной 10 см находится в однородном магнитном поле с индукцией 4 Тл и расположен под углом 30^0 к вектору магнитной индукции. Чему равна сила, действующая на проводник со стороны магнитного поля, если сила тока в проводнике 3 А?
 - 1) 1,2 H; 2) 0,6 H; 3) 2,4 H.
- **5.** В магнитном поле находится проводник с током. Каково направление силы Ампера, действующей на проводник?
 - 1) от нас; 2) к нам; 3) равна нулю.

6.Электромагнитная индукция – это:

- 1) явление, характеризующее действие магнитного поля на движущийся заряд;
- 2) явление возникновения в замкнутом контуре электрического тока при изменении магнитного потока;
- 3) явление, характеризующее действие магнитного поля на проводник с током.
- 7. На квадратную рамку площадью 1 м^2 в однородном магнитном поле с индукцией 2 Тл действует максимальный вращающий момент, равный $4 \text{ H}\cdot\text{м}$. чему равна сила тока в рамке?

1) 1,2 A; 2) 0,6 A; 3) 2A.

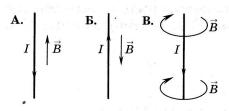
8. Установите соответствие между физическими величинами и единицами их измерения

ВЕЛИЧИНЫ		ЕДИНИЦЫ ИЗМЕРЕНИЯ	
A)	индуктивность	1)	тесла (Тл)
Б)	магнитный поток	2)	генри (Гн)
B)	индукция магнитного поля	3)	вебер (Вб)
		4)	вольт (В)

9. Частица массой m, несущая заряд q, движется в однородном магнитном поле с индукцией B по окружности радиуса R со скоростью v. Что произойдет с радиусом орбиты, периодом обращения и кинетической энергией частицы при увеличении скорости движения? К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами

	▼ 1 · 11 · · ·		<u> </u>
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ		ИХ ИЗМЕНЕНИЯ	
A)	радиус орбиты	1)	увеличится
Б)	период обращения	2)	уменьшится
B)	кинетическая энергия	3)	не изменится

10. В катушке, индуктивность которой равна 0,4 Гн, возникла ЭДС самоиндукции, равная 20 В. Рассчитайте изменение силы тока и энергии магнитного поля катушки, если это произошло за 0,2 с.

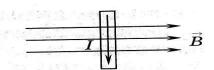

Вариант 2

- 1. Поворот магнитной стрелки вблизи проводника с током объясняется тем, что на нее действует:
 - 1) магнитное поле, созданное движущимися в проводнике зарядами;
 - 2) электрическое поле, созданное зарядами проводника;
 - 3) электрическое поле, созданное движущимися зарядами проводника.
- 2. Движущийся электрический заряд создает:
 - 1) только электрическое поле;
 - 2) как электрическое поле, так и магнитное поле;
 - 3) только магнитное поле.
- 3. На каком из рисунков правильно показано направление индукции магнитного поля, созданного прямым проводником с током.

2) Б;

3) B.

4. Прямолинейный проводник длиной 5 см находится в однородном магнитном поле с индукцией 5 Тл и расположен под углом 30° к вектору магнитной индукции. Чему равна сила, действующая на проводник со стороны магнитного поля, если сила тока в проводнике 2 А?


1) 0,25 H;

2) 0,5 H;

3) 1,5 H.

5. В магнитном поле находится проводник с током. Каково направление силы Ампера, действующей на проводник?

1) от нас; 2) к нам; 3) равна нулю.

6. Сила Лоренца действует

- 1) на незаряженную частицу в магнитном поле;
- 2) на заряженную частицу, покоящуюся в магнитном поле;
- 3) на заряженную частицу, движущуюся вдоль линий магнитной индукции поля.
- **7.**На квадратную рамку площадью 2 м^2 при силе тока в 2 A действует максимальный вращающий момент, равный 4 H·m. Какова индукция магнитного поля в исследуемом пространстве ?
 - 1)1 Тл; 2) 2 Тл; 3) 3Тл.

8. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются

ВЕЛИЧИНЫ		ЕДИНИЦЫ ИЗМЕРЕНИЯ	
A)	Сила, действующая на проводник с	1)	$qVB \sin \alpha$
	током со стороны магнитного поля		•
Б)	Энергия магнитного поля	2)	$BS \cos \alpha$
B)	Сила, действующая на электрический	3)	$IBL \sin \alpha$
	заряд, движущийся в магнитном поле.		
		4)	LI^2
			2

9. Частица массой m, несущая заряд q, движется в однородном магнитном поле с индукцией B по окружности радиуса R со скоростью v. Что произойдет с радиусом орбиты, периодом обращения и кинетической энергией частицы при увеличении заряда частицы? К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ		ИХ ИЗМЕНЕНИЯ	
A)	радиус орбиты	1)	увеличится
Б)	период обращения	2)	уменьшится
B)	кинетическая энергия	3)	не изменится

10. Под каким углом к силовым линиям магнитного поля с индукцией 0,5 Тл должен двигаться медный проводник сечением 0,85 мм 2 и сопротивлением 0,04 Ом, чтобы при скорости 0,5 м/с на его концах возбуждалась ЭДС индукции, равная 0,35 В? (удельное сопротивление меди ρ = 0,017 Ом·мм 2 /м)

Контрольная работа №2 «Колебания и волны»

Назначение КИМ: осуществить объективную индивидуальную оценку учебных достижений по физике. Контрольная работа составлена в соответствии с рабочей программой по физике для 11 класса.

Структура КИМ:

Контрольная работа состоит из 2 вариантов и содержит: № 1-4 – расчетные задачи; № 5 – качественная задача

Время выполнения заданий:

Контрольная работа рассчитана на один урок (45 минут).

Инструкция по выполнению тестов:

При вычислении расчетов разрешается использовать непрограммируемый калькулятор.

Критерии оценивания ответов:

№ 1-4 — необходимо кратко записать условие задачи, физические величины в СИ, решение задачи, отображающее основные шаги решения в виде формул без развернутых объяснений, проверить единицы измерения искомой величины, вычислить ее значение и записать ответ. Каждая правильно решенная задача оценивается в 2 балла. Задача №5 - полный правильный ответ - 2 балла, частичный ответ - 1 балл, неверный ответ - 0 баллов.

Критерии оценивания:

1-4 баллов	5-6 баллов	7-8 баллов	9-10 баллов
«2»	«3»	«4»	«5»

Вариант 1

- 1. Напишите уравнение гармонических колебаний, если частота равна 0,5 Гц, а амплитуда колебаний 80 см.
- **2**. Ускорение свободного падения на Луне 1,6 м/ с². Какой длины должен быть математический маятник, чтобы период его колебаний был равен 4,9 с?
- **3**. Расстояние между ближайшими гребнями волн 10м. Какова частота ударов волн о корпус, если скорость волн 3 м/с ?
- **4.** Найти период и частоту колебаний в контуре, если ёмкость конденсатора составляет $7.47 \times 10^{-10} \, \Phi$, а индуктивность катушки $10.41 \times 10^{-4} \, \Gamma$ н.
- 5. Почему в метро радиоприемник умолкает?

Вариант 2

- 1. Дано уравнение гармонического колебания: $x = 0.4 \cos 5\pi t$. Определите амплитуду и период колебаний.
- 2. Пружина под действием прикрепленного груза массой 5 кг совершила 45 колебаний за минуту. Найти жесткость пружины.
- 3. Определите скорость звука в воде, если известно, что источник колеблется с периодом 0,002 с и при этом излучается волна с длиной 2,9 м.
- 4.Определите индуктивность катушки колебательного контура, если емкость конденсатора составляет $5\,\mathrm{mk}\Phi$, а период колебаний $0.001\,\mathrm{c}$?
- 5. При каком движении ускоренном иди равномерном электрический заряд может излучать электромагнитную волну?

Контрольная работа №3 «Оптика. Основы специальной теории относительности»

Назначение КИМ: осуществить объективную индивидуальную оценку учебных достижений по физике. Контрольная работа составлена в соответствии с рабочей программой по физике для 11 класса.

Структура КИМ:

Контрольная работа состоит из 4 вариантов и содержит: \mathbb{N} 1-4 — тестовая часть; \mathbb{N} 5 — задание на построение; \mathbb{N} 6, 7 — расчетные задачи.

Время выполнения заданий:

Контрольная работа рассчитана на один урок (45 минут).

Инструкция по выполнению тестов:

При вычислении расчетов разрешается использовать непрограммируемый калькулятор.

Критерии оценивания ответов:

№ 1-4 — это задания с выбором одного правильного ответа, содержат формулировку задания и варианты ответов к нему. Среди приведенных вариантов ответов один является правильным. В процессе выполнения задания необходимо выбрать правильный ответ. Каждое из заданий оценивается в 1 балл.

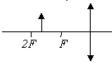
№ 5 – задание на построение изображения в линзе, оценивается в 2 балла.

№ 6, 7 — необходимо кратко записать условие задачи, физические величины в СИ, решение задачи, отображающее основные шаги решения в виде формул без развернутых объяснений, проверить единицы измерения искомой величины, вычислить ее значение и записать ответ. Каждая правильно решенная задача оценивается в 2 балла.

Критерии оценивания:

отметка «3»: от 5 баллов до 6 баллов;

отметка «4»: 7-8 баллов; отметка «5»: 9-10 баллов.


1-4 баллов	5-6 баллов	7-8 баллов	9-10 баллов
«2»	«3»	«4»	«5»

Вариант 1

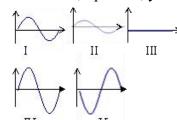
1. Параллельный пучок лучей, падающих на линзу, всегда пересекается в одной точке, находящейся...

А. в фокусе; Б. на фокальной плоскости; В. в оптическом центре;

Г. в точке, удаленной от линзы на удвоенное фокусное расстояние.

2. На рисунке 61 изображено положение главной оптической оси, ее фокусы и предмет. Используя построение, определите, какое получится изображение?

А. Увеличенное, действительное, перевернутое.


Б.Уменьшенное, действительное, перевернутое.

В. Увеличенное, мнимое, прямое. Г. Уменьшенное, мнимое, прямое.

3. Изображение предмета в рассеивающей линзе является...

А. мнимым, прямым, уменьшенным; Б. действительным, перевернутым, уменьшенным;

В. мнимым, прямым, увеличенным; Г. действительным, перевернутым, увеличенным.

4. На рисунке 63 представлены мгновенные положения пяти электромагнитных волн. Диаграмма I определяет волну, получившуюся в результате сложения волн:

A. III и IV; Б. II и IV; В. II и V; Г. IV и V.

5. Какое из приведенных ниже выражений определяет понятие интерференции? Укажите все правильные ответы.

А. Разложение в спектр при преломлении.

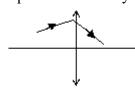
Б. Уменьшение отражения света от поверхности линзы.

В. Наложение когерентных волн. Г. Огибание волной препятствия.

6. Дифракционная решетка имеет 150 штрихов на миллиметр. Под каким углом виден максимум второго порядка монохроматического излучения с длиной волны 600 нм?

7. Предмет находится от собирающей линзы на расстоянии 4 м, а изображение, даваемое этой линзой, на расстоянии 6 м. Чему равно фокусное расстояние и оптическая сила линзы?

8. Постройте изображение точки A в рассеивающей линзе, если точка находится между F и 2F.


Вариант 2

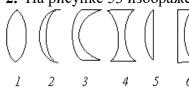
1. Какое из наблюдаемых явлений объясняется интерференцией света? Укажите все правильные ответы.

А. Радужная окраска мыльных пузырей. Б. Радуга.

- В. Излучение света лампой накаливания. Г.Радужная окраска компакт-дисков.
- 2. Предмет находится между фокусом и двойным фокусом рассеивающей линзы. Изображение предмета в линзе... Доказать построением.
- А. мнимое, прямое, уменьшенное Б. действительное, перевернутое, увеличенное;
- В. действительное, перевернутое, уменьшенное; Г. мнимое, прямое, увеличенное.
- 3. При отражении от тонкой пленки (рис. 65) интерферируют лучи... В. 3 и 4;
- А. 1 и 2; Б. 2 и 3;
- 4. Дисперсия присуща ... А. только механическим волнам.
- Б. только электромагнитным волнам.
- В. только звуковым волнам. Г. всем видам волн.
- 5. Определите построением положение фокусов линзы, если задана оптическая ось и ход произвольного луча (рис. 57).

Г. 1 и 4.

- 6. Через дифракционную решетку, имеющую 300 штрихов на миллиметр, пропущено монохроматическое излучение с длиной волны 750 нм. Определить угол, под которым виден максимум первого порядка этой волны.
- 7. Фокусное расстояние рассеивающей линзы равно 6 м, а изображение, даваемое этой линзой, находится от линзы на расстоянии 2 м. На каком

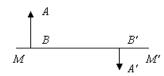

расстоянии от линзы находится предмет?

8. Постройте изображение точки А в собирающей линзе, если точка находится за 2F.

Вариант 3

- 1. Какое из приведенных ниже выражений определяет понятие дисперсии? Укажите все правильные утверждения.
- А. Наложение когерентных волн.
- Б. Разложение в спектр при преломлении.
- В. Огибание волной препятствия. линзы.
- Г.Уменьшение отражения света от поверхности

2. На рисунке 53 изображены линзы, сделанные из стекла и находящиеся в воздухе. Какие линзы будут собирающими?

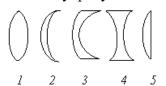

- A. 1, 2, 3. Б. 1, 2, 4. B. 1, 2, 5. Γ. 3, 4, 6.
- 3. Чтобы получить действительное, увеличенное, перевернутое изображение в собирающей линзе, предмет надо расположить...

А. в фокусе линзы;

Б. между фокусом и двойным фокусом

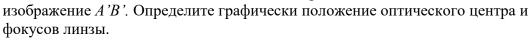
линзы:

- В. за двойным фокусом линзы; Г. между фокусом и линзой.
- 4. Какое из наблюдаемых явлений объясняется дифракцией света? Укажите все правильные ответы.
- А. Излучение света лампой накаливания.
- Б. Радужная окраска мыльных пузырей.
- Г.Радужная окраска компакт-дисков. В. Радуга.
- **5.** На рисунке 54 показаны главная оптическая ось *ММ* ' линзы, предмет АВ и его изображение А'В'. Определите графически положение оптического центра и фокусов линзы.


- 6. Какой наибольший порядок спектра можно видеть в дифракционной решетке, имеющей 500 штрихов на 1 мм, при освещении ее светом с длиной волны 720 нм?
- 7. Оптическая сила линзы равна -5 дптр. Чему равно ее фокусное расстояние и оптическая сила? Что это за линза?
- 8. Постройте изображение вектора АВ в рассеивающей линзе, если вектор находится между Ои F.

Вариант 4

1. На рисунке 64 представлены мгновенные положения пяти электромагнитных волн.


Диаграмма II определяет волну, получившуюся в результате сложения волн:

- А. І и II; Б. І и IV; В. І и V; Г. IV и V.
- 2. Какое из приведенных ниже выражений определяет понятие дифракции? Укажите все правильные ответы.
- А. Наложение когерентных волн. Б. Разложение в спектр при преломлении.
- В. Огибание волной препятствия.
- Г.Уменьшение отражения света от поверхности линзы.
- 3. Чтобы получить мнимое, увеличенное, прямое изображение в собирающей линзе, предмет надо расположить...
- А. в фокусе линзы;
- Б. между фокусом и линзой;
- В. между фокусом и двойным фокусом линзы; Г. за двойным фокусом линзы.

4. На рисунке 55 изображены линзы, сделанные из стекла и находящиеся в воздухе. Какие линзы будут рассеивающими?

 $^{-5}$ 5. На рисунке 56 показаны главная оптическая 6 ось MM' линзы, предмет AB и его

- **6.** Дифракционная решетка содержит 500 штрихов на 1 мм. Максимум какого наибольшего порядка дает эта решетка при перпендикулярном падении на нее монохроматического света с длиной волны 520 нм?
- 7. Тонкая двояковыпуклая линза имеет фокусное расстояние 80 см. Чему равна ее оптическая сила и фокусное расстояние?
- 8. Постройте изображение тела АС в собирающей линзе, если тело находится между О и F.

Контрольная работа №4 по теме «Квантовая физика»

Назначение КИМ: осуществить объективную индивидуальную оценку учебных достижений по физике. Контрольная работа составлена в соответствии с рабочей программой по физике для 11 класса.

Структура КИМ:

Контрольная работа состоит из 2 вариантов, составлена в формате: тестовая часть № 1-9; задача № 10.

Время выполнения заданий: контрольная работа рассчитана на один урок (45 минут).

Инструкция по выполнению тестов:

При вычислении расчетов разрешается использовать непрограммируемый калькулятор.

Критерии оценивания ответов:

№ 1-9 – это задания с выбором одного правильного ответа, содержат формулировку задания и варианты ответов к нему. Среди приведенных вариантов ответов один является правильным. В процессе выполнения задания необходимо выбрать правильный ответ. Каждое из заданий оценивается в 1 балл.

 N_{2} 10 — расчетная задача, необходимо кратко записать условие задачи, физические величины в СИ, решение задачи, отображающее основные шаги решения в виде формул без

развернутых объяснений, проверить единицы измерения искомой величины, вычислить ее значение и записать ответ. Правильно решенная задача оценивается в 2 балла.

Критерии оценивания:

отметка «3»: 5-7 баллов; отметка «4»: 8-9 баллов; отметка «5»: 10-11 баллов.

1-4 баллов	5-7 баллов	8-9 баллов	10-11 баллов
2	3	4	5

Вариант № 1

- 1. Что такое бета-частица?
- 1) электрон; 2) ядро атома гелия; 3) протон; 4) нейтрон.
- **2.** Способность атомов некоторых химических элементов к самопроизвольному излучению называется:
- 1) сцинтилляцией;
- 2) радиоактивностью;
- 3) термоядерной реакцией;
- 4) люминесценцией.
- 3. Что представляет собой атом в модели Резерфорда?
- 1) в центре атома находится положительно заряженное ядро, вокруг которого движутся электроны;
- 2) в центре атома находится отрицательно заряженное ядро, вокруг которого движутся положительные заряды;
- 3) по всему объёму атома равномерно распределён положительный заряд, внутри которого колеблются электроны;
- 4) по всему объёму атома равномерно распределён отрицательный заряд, внутри которого колеблются положительные заряды.
- **4.** Согласно результатам опытов Резерфорда по рассеянию альфа-частиц на металлической фольге размеры атомных ядер равны
- 1) $10^{-14} 10^{-15}$ m; 2) $10^{-12} 10^{-13}$ m; 3) $10^{-9} 10^{-10}$ m; 4) $10^{-5} 10^{-6}$ m.
- **5.** Сколько электронов содержится в атоме углерода ${}^{12}{}_{6}C$?
- 1) 2; 2) 6; 3) 12; 4) 18.
- **6.** Определите заряд ядра и массовое число химического элемента X, образующегося в результате следующей реакции $^{12}{}_6C \rightarrow X + ^{0}{}_{-1}e$.
- 1) Z = 13, A = 6; 2) Z = 14, A = 5; 3) Z = 7, A = 12; 4) Z = 6, A = 13.
- 7. Какое предположение относительно состава ядер позволил сделать результат опыта Резерфорда по взаимодействию альфа-частиц с атомами различных элементов?
- 1) в состав ядра входят протоны;
- 2) в состав ядра входят нейтроны;
- 3) в состав ядра входят электроны;
- 4) в состав ядра не входят нуклоны.
- 8. Какие силы удерживают нуклоны в ядре?
- 1) гравитационные; 2) электромагнитные; 3) слабые; 4) сильные.
- 9. Коэффициент качества измеряется в:
- 1) это безразмерная величина; 2) греях; 3) рентгенах; 4) джоулях.
- **10.** Вычислить массу ядра $^{9}_{4}$ Ве, если удельная энергия связи для него равна $6{,}46$ МэВ/нуклон.

Вариант № 2

- 1. Что такое гамма-частица?
- 1) электрон; 2) протон; 3) ядро атома гелия;

4) квант электромагнитного излучения. 2. Кто открыл явление радиоактивности? 1) Резерфорд; 2) Демокрит; 3) Томсон; 4) Беккерель. 3. Явление радиоактивности свидетельствует о том, что атом: 1) неделим; 2) имеет сложную структуру; 3) является наименьшей частицей вещества; 4) имеет электрический заряд. 4. Проанализировав результаты опытов по рассеянию альфа-частиц на металлической фольге, Резерфорд пришёл к выводу, что: 1) внутри атома имеется сильное гравитационное поле; 2) внутри атома имеется сильное электрическое поле; 3) внутри атома нет никакого поля; 4) никаких выводов сделать нельзя. **5.** В результате радиоактивного превращения ядра атома радия $^{226}_{88}Ra$ в ядро атома радона $^{222}_{86}$ *Ra* образуется: 1) альфа-частица; 2) бета-частица; 3) гамма-частица; 4) никакая частица не образуется. **6.** Сколько протонов содержится в атоме углерода ${}^{12}{}_{6}C$? 1) 2: 2) 6: 3) 12; 4) 18. 7. Какой из приведённых ниже методов регистрации позволяет рассчитать массу, энергию и заряд частиц? 2) счётчик Гейгера; 1) метод сцинтилляций; 3) пузырьковая камера; 4) камера Вильсона, помещённая в магнитное поле. **8.** В результате какого числа бета-распадов ядро атома тория 234 ₉₀Th превращается в ядро атома урана $^{234}_{92}U$? 1) 1; 2) 2; 3) 3; 4) 4. 9. Коэффициент качества показывает, во сколько раз радиационная опасность от воздействия на живой организм данного вида излучения больше, чем от воздействия:

Промежуточная аттестация. Итоговая контрольная работа

2) бета-излучения;

4) гамма-излучения.

Вариант 1

Начальный уровень.

1) альфа-излучения;

3) быстрых нейтронов;

С поглощением или выделением энергии?

- 1. При силе тока 3А в проволочной рамке возникает магнитный поток 6Вб. Чему равна индуктивность рамки?
- 2. Какое математическое выражение служит для определения магнитного потока, пронизывающего контур?
- 3. Через катушку индуктивности 3Гн протекает постоянный ток силой 4А. Чему равна энергия магнитного поля катушки?
- 4. За 2с маятник совершил 8 колебаний. Чему равен период колебаний?

10. Определить, как протекает реакция 14 ₇ N+ 4 ₂He = 17 ₈O + 1 ₁H.

Средний уровень.

- 5. Значение напряжения, измеренное в вольтах, задано уравнением u=120 sin 40пt, где t выражено в секундах. Чему равна амплитуда напряжения, период и частота?
- 6. Первичная обмотка трансформатора содержит 800 витков, вторичная 3200. Определите коэффициент трансформации.

- 7. Чему равна длина волны, излучаемой передатчиком, если период колебаний равен $0.2 \cdot 10^{-6}$ с?
- 8. Найдите наибольший порядок спектра красной линии лития с длиной волны 671 нм, если период дифракционной решетки 0,01 мм.
- 9. Наибольшая длина волны света, при которой наблюдается фотоэффект для калия, $6.2 \cdot 10^{-5}$ см. Найти работу выхода электронов из калия.
- 10. Определите энергетический выход ядерной реакции $^{15}N + ^{1}H = ^{12}C + ^{4}He$, если энергия связи у ядер азота 115,6МэВ, углерода 92,2МэВ, гелия 28, 3МэВ.

Достаточный уровень.

11.Во что превращается уран-238, после альфа распада и двух бета распадов?

Вариант 2

Начальный уровень.

- 1. Значение силы переменного тока задано уравнением $x = 0,1 \sin 100\pi t$; измеренное в амперах. Чему равна амплитуда силы тока?
- 2. В первичной обмотке трансформатора 100 витков, во вторичной 20. Чему равен коэффициент трансформации?
- 3. Оптическая сила линзы 10 дптр. Чему равно фокусное расстояние?
- 4. Чему равна максимальная кинетическая энергия фотоэлектронов, вырываемых из металла под действием фотонов с энергией $8\cdot 10^{-19}$ Дж, если работа выхода $2\cdot 10^{-19}$ Дж?

Средний уровень.

- 5. Какова индуктивность катушки, если при равномерном изменении в ней тока от 5 до 10А за 0,1с возникает ЭДС самоиндукции, равная 20В?
- 6. Найти энергию магнитного поля соленоида, в котором при силе тока 10А возникает магнитный поток 0,5Вб?
- 7. Определите индуктивность катушки колебательного контура, если емкость конденсатора равна 5мкФ, а период колебаний 0,001с.
- 8. На каком расстоянии от собирающей линзы с фокусным расстоянием 20 см получится изображение предмета, если сам предмет находится от линзы на расстоянии 15см?
- 9. Какому изменению массы соответствует изменение энергии на 4,19Дж?
- 10. Найти частоту и длину волны излучения, масса фотонов которых равна массе покоя электрона.

Достаточный уровень.

11. Записать реакцию непосредственного превращения актиния-227 во франций-223; альфа или бета распад имеет здесь место?