МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ УЧЕБНО-ВОСПИТАТЕЛЬНЫЙ КОМПЛЕКС «ШКОЛЬНАЯ АКАДЕМИЯ ИМЕНИ МАЛЬЦЕВА АЛЕКСАНДРА ИВАНОВИЧА» ГОРОДА БАХЧИСАРАЙ РЕСПУБЛИКИ КРЫМ

Контрольно-измерительные материалы к рабочей программе по алгебре и началам математического анализа (углубленный уровень)

Класс 11

Всего часов <u>136</u>

Количество часов в неделю 4

Составлена в соответствии с программой

<u>- Федеральная рабочая программа среднего общего образования. Математика (для 10–11 классов образовательных организаций). Углубленный уровень.</u>

название программы с указанием автора и сборника, год издания

Учебник:

Математика: алгебра и начало математического анализа, геометрия. Алгебра и начало математического анализа, 11 классы/ Алимов Ш.А., Колягин Ю.М., Ткачева М.В. и другие, Акционерное общество «Издательство «Просвещение», 2022

 Фамилия
 Таран

 Имя
 Светлана

 Отчество
 Викторовна

 Категория
 высшая

 Стаж работы
 32

по теме «Производная и ее геометрический смысл»

Вариант 1

- 1. Найдите производную функции: a) $3x^2 \frac{1}{x^3}$; б) $\left(\frac{x}{3} + 7\right)^6$; в) $e^x \cos x$; г) $\frac{2^x}{\sin x}$.
- 2. Найдите значение производной функции $f(x) = 1 6\sqrt[3]{x}$ в точке $x_0 = 8$.
- 3. Запишите уравнение касательной к графику функции $f(x) = \sin x 3x + 2$ в точке $x_0 = 0$.
- 4. Найдите значения x, при которых значения производной функции $f(x) = \frac{x+1}{x^2+3}$ положительны.
- 5. Найдите точки графика функции $f(x) = x^3 3x^2$, в которых касательная к нему параллельна оси абсцисс.
- 6. Найдите производную функции $f(x) = \log_3(\sin x)$.

Вариант 2

- 1. Найдите производную функции: a) $2x^3 \frac{1}{x^2}$; б) $(4 3x)^6$; в) $e^x \cdot \sin x$ г) $\frac{3^x}{\cos x}$.
- 2. Найдите значение производной функции $f(x) = 2 \frac{1}{\sqrt{x}}$ в точке $x_0 = \frac{1}{4}$.
- 3. Запишите уравнение касательной к графику функции $f(x) = 4x \sin x + 1$ в точке $x_0 = 0$.
- 4. Найдите значения x, при которых значения производной функции $f(x) = \frac{1-x}{x^2+8}$ отрицательны.
- 5. Найдите точки графика функции $f(x)=x^3+3x^2$, в которых касательная к нему параллельна оси абсцисс.
- 6. Найдите производную функции $f(x) = \cos(\log_2 x)$.

№ задания	Количество баллов
1	4
2	2
3	4
4	2
5	4
6	2
всего	17 баллов

Количество баллов	0-3	4-9	10-14	15-17
отметка	2	3	4	5

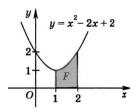
по теме «Применение производной к исследованию функций»

Вариант 1

- 1. Найдите стационарные точки функции $f(x) = x^3 2x^2 + x + 3$.
- 2. Найдите экстремумы функции: a) $f(x) = x^3 2x^2 + x + 3$; б) $f(x) = e^x(2x 3)$.
- 3. Найдите интервалы возрастания и убывания функции $f(x) = x^3 2x^2 + x + 3$.
- 4. Постройте график функции $f(x) = x^3 2x^2 + x + 3$ на отрезке [-1; 2].
- 5. Найдите наибольшее и наименьшее значения функции $f(x) = x^3 2x^2 + x + 3$ на отрезке [0; 1,5].
- 6. Среди прямоугольников, сумма длин трех сторон которых равна 20, найдите прямоугольник наибольшей площади.

Вариант 2

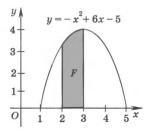
- 1. Найдите стационарные точки функции $f(x) = x^3 x^2 x + 2$.
- 2. Найдите экстремумы функции: a) $f(x) = x^3 x^2 x + 2$; б) $f(x) = e^x(5 4x)$.
- 3. Найдите интервалы возрастания и убывания функции $f(x) = x^3 x^2 x + 2$.
- 4. Постройте график функции $f(x) = x^3 x^2 x + 2$ на отрезке [-1; 2].
- 5. Найдите наибольшее и наименьшее значения функции $f(x) = x^3 x^2 x + 2$ на отрезке [0; 1,5].
- 6. Найдите ромб с наибольшей площадью, если известно, что сумма длин его диагоналей равна 10.


№ задания	Количество баллов
1	2
2	4
3	3
4	3
5	3
6	3
всего	18 баллов

Количество баллов	0-2	3-9	10-15	16-18
отметка	2	3	4	5

по теме «Интеграл»

Вариант 1


- 1. Докажите, что функция $F(x) = 3x + \sin x e^{2x}$ является первообразной функции $f(x) = 3 + \cos x 2e^{2x}$ на всей числовой оси.
- 2. Найдите первообразную F функции f (x) = $2\sqrt{x}$, график которой проходит через точку A(0; $\frac{7}{9}$).
- 3. Вычислите площадь фигуры, изображенной на рисунке.

- 4. Вычислить интеграл: a) $\int_{1}^{2} \left(x + \frac{2}{x} \right) dx$; б) $\int_{0}^{\frac{\pi}{2}} \cos^{2} x \ dx$.
- 5. Найдите площадь фигуры, ограниченной прямой y = 1 2x и графиком функции $y = x^2 5x 3$.

Вариант 2

- 1. Докажите, что функция $F(x) = x + \cos x + e^{3x}$ является первообразной функции $f(x) = 1 \sin x + 3e^{3x}$ на всей числовой оси.
- 2. Найдите первообразную F функции f (x) = $3\sqrt[3]{x}$, график которой проходит через точку A(0; $\frac{3}{4}$).

- 3. Вычислите площадь фигуры, изображенной на рисунке.
- 4. Вычислить интеграл: a) $\int_{1}^{3} \left(x^{2} + \frac{3}{x}\right) dx$; б) $\int_{0}^{\frac{\pi}{2}} \sin^{2}x \ dx$.
- 5. Найдите площадь фигуры, ограниченной прямой y = 3 2x и графиком функции $y = x^2 + 3x 3$.

№ задания	Количество баллов
1	1
2	2
3	2
4	2
5	3
всего	10 баллов

Количество баллов	0-2	3-5	6-8	9-10
отметка	2	3	4	5

по теме «Комплексные числа»

Вариант 1

1) Вычислить: a)
$$(3-2i)(4+i)-(7-5i)$$
, 6) $\frac{1+i}{2-3i}+(\frac{3}{5}-i):2,6$.

- **2**) Выполнить действия $i^5 + i^3 + i^2$ и результат представить в тригонометрической форме.
- **3**) Представить в тригонометрической форме число: a) 5; б) $\frac{\sqrt{3}+i}{2}$.

4) Выполнить действия: a)
$$2\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right) \cdot 3\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$
, 6) $\frac{\sqrt{14}\left(\cos 18^\circ + i\sin 18^\circ\right)}{\sqrt{7}\left(\cos 36^\circ + i\sin 36^\circ\right)}$.

- 5) Найти множество точек комплексной плоскости, удовлетворяющих условию: а) |z|=2, б) |z-1|<3.
- **6)** Решить уравнение: a) $z^2 4z + 7 = 0$, 6) $z^3 = -27$.

Вариант 2

1) Вычислить: a)
$$(4-5i)-(2+i)(1-3i)$$
, б) $\frac{2-i}{1+3i}-\left(\frac{3}{5}-\frac{1}{2}i\right)\cdot 1,4$.

- 2) Выполнить действия $i^4 + i^5 + i^3$ и результат представить в тригонометрической форме.
- **3**) Представить в тригонометрической форме число: a) -3; б) $\frac{1+\sqrt{3}i}{2}$.
- 4) Выполнить действия: a) $\sqrt{2} \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right) \cdot \sqrt{3} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$, 6) $\frac{3(\cos 15^\circ + i \sin 15^\circ)}{5(\cos 60^\circ + i \sin 60^\circ)}$.
- 5) Найти множество точек комплексной плоскости, удовлетворяющих условию: а) |z|=5, б) |z+2|<2.
- **6)** Решить уравнение: a) $z^2 2z + 6 = 0$, 6) $z^3 = -8$.

№ задания	Количество баллов
1	1
2	2
3	2
4	2
5	3
6	2
всего	12 баллов

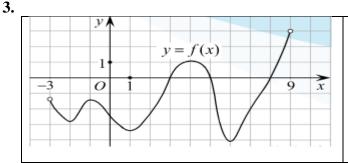
Количество баллов	0-2	3-8	9-10	11-12
отметка	2	3	4	5

Годовая контрольная работа по алгебре и началам математического анализа Вариант 1

<u>Часть І.</u> (задание №2 с выбором ответа из четырёх предложенных и задания №1, №3 с записью краткого ответа в виде целого числа или конечной десятичной дроби)

1. Укажите наименьшее значение функции $y = 2 - 5 \sin x$.

Найдите производную функции $y = 2^x + \cos x$. $y' = 2^x - \sin x$ 2) $y' = x 2^{x-1} + \cos x$ 3) $y' = 2^x \ln 2 - \sin x$ 4) $y' = 2^x \ln 2 - \sin x$


$$1) y' = 2^x - \sin x$$

2)
$$y' = x 2^{x-1} + \cos x$$

3)
$$y' = 2^x \ln 2 - \sin x$$

4)
$$y' = 2^x \ln 2 -$$

cosx

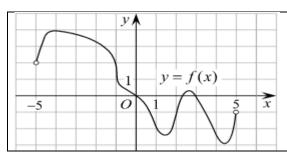
На рисунке изображен график функции y = f(x), определенной на интервале (-3; 9). Найдите количество точек, в которых касательная к графику функции параллельна прямой у = 12 или совпадает с ней.

Часть II. Запишите обоснованное решение и ответ.

- Найдите первообразную F(x) функции $f(x) = \frac{1}{\sqrt{x+1}} + 2x$, если график первообразной проходит через точку М(3; 13).
- В случайном эксперименте бросают две игральные кости. Найдите вероятность
- того, что в сумме выпадет 7 очков. Результат округлитедо сотых. **6.** Тело движется прямолинейно по закону $x(t) = 2t^4 3t^3 5t^2$ (xв метрах, t в секундах). Найдите его скорость в момент времени t = 10c.
- Касательная к графику функции $f(x) = 3-2x-x^2$ параллельна прямой y = 4x. Найдите абсциссу точки касания.

Вариант 2

Часть I. (задание №2 с выбором ответа из четырёх предложенных и задания №1, №3 с записью краткого ответа в виде целого числа или конечной десятичной дроби)


- **1.** Укажите наибольшее значение функции $y = -3 2\cos x$.
- Найдите производную функции $v = e^{-x} + x^2$. 2.

1)
$$y' = -e^{-x} + x^2$$
2) $y' = -e^{-x} + 2x$ 3) $y' = e^{-x} + 2x$

3)
$$y' = e^{-x} + 2x$$

4)
$$y' = e^{-x} - 2x$$

3.

На рисунке изображен график функции y = f(x), определенной на интервале (-5; 5). Найдите количество точек, в которых касательная к графику функции параллельна прямой у = 6 или совпадает с ней.

Часть II. Запишите обоснованное решение и ответ.

- Найдите первообразную F(x) функции $f(x) = e^{x-2} + 4x$, если график первообразной проходит через точку М(2; -10).
- В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 5 очков. Результат округлите до сотых.
- Тело движется прямолинейно по закону $x(t) = 3t^4 2t^3 + 1$ (xв метрах, t в секундах). Найдите его скорость в момент времени t = 2.
- Угловой коэффициент касательной к графику функции $f(x) = 7x^2 2x + 1$ равен 26. Найдите абсциссу точки касания.

Часть	№ задания	Количество баллов
I	1	1
	2	1
	3	1
II	4	2
	5	2
	6	2
	7	2
	всего	11баллов

Количество баллов	0-2	3-6	7-9	10-11
отметка	2	3	4	5