МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ УЧЕБНО-ВОСПИТАТЕЛЬНЫЙ КОМПЛЕКС "ШКОЛЬНАЯ АКАДЕМИЯ ИМЕНИ МАЛЬЦЕВА АЛЕКСАНДРА ИВАНОВИЧА" ГОРОДА БАХЧИСАРАЙ РЕСПУБЛИКИ КРЫМ

ПРИНЯТО

Педагогическим советом МБОУ УВК «Школьная академия им. Мальцева А.И.» (протокол от 29.08.2025 г. № 11)

УТВЕРЖДАЮ

Директор МБОУ УВК

«Школьная академия

им. Мальиева А.И.»

Н.Н.Марынич 29.08.2025 г.

Рабочая программа

учебного предмета « Геометрия»

Класс 11 Всего часов - 34 Количество часов в нелелю - 1

Составлена в соответствии с Федеральным государственным образовательным стандартом среднего общего образования, <u>Федеральной рабочей программы среднего общего образования. Математика (для 10-11 классов образовательных организаций). Базовый уровень, Предметная область «Математика и информатика». Москва 2025.</u>

Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10-11 классы: учеб. для общеобразоват. организаций: базовый и углубл. уровни / [Л.С. Атанасян и др.]. — 10-е изд., стер. - Москва: Просвещение, 2022. — 287с.

Группа учителей:

Аммосова Яна Вячеславовна, высшая категория, стаж работы 31 лет Небиева Эльзара Изетовна, СЗД, стаж работы 13 лет

РАССМОТРЕНО школьным методическим объединением (протокол от 28 .08, 2025 г.№ 4)

СОГЛАСОВАНО
Заместитель директора по УВР
МБОУ УВК «Школьная академия
им. Мальцева А.И.»

жыб Д. В.Е.Косенко

г. Бахчисарай 2025 г.

ФЕДЕРАЛЬНАЯ РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «ГЕОМЕТРИЯ»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Важность учебного курса геометрии на уровне среднего общего образования обусловлена практической значимостью метапредметных И результатов обучения геометрии В направлении личностного развития обучающихся, формирования функциональной математической грамотности, изучения других учебных дисциплин. Развитие у обучающихся правильных представлений о сущности и происхождении геометрических соотношении реального и идеального, характере отражения математической наукой процессов реального явлений мира, месте геометрии И в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения обучающихся, а также качеств мышления, необходимых для адаптации в современном обществе.

Геометрия является одним из базовых предметов на уровне среднего общего образования, так как обеспечивает возможность изучения как дисциплин естественно-научной направленности, так и гуманитарной.

Логическое мышление, формируемое при изучении обучающимися понятийных основ геометрии и построении цепочки логических утверждений в ходе решения геометрических задач, умение выдвигать и опровергать гипотезы непосредственно используются при решении задач естественно-научного цикла, в частности из курса физики.

Умение ориентироваться в пространстве играет существенную роль во всех областях деятельности человека. Ориентация человека во времени и пространстве – необходимое условие его социального бытия, форма отражения окружающего мира, условие успешного познания и активного преобразования действительности. Оперирование пространственными образами объединяет разные виды учебной и трудовой деятельности, является одним из профессионально важных качеств, поэтому актуальна задача формирования у обучающихся пространственного мышления как разновидности образного мышления — существенного компонента в подготовке к практической деятельности по многим направлениям.

Цель освоения программы учебного курса «Геометрия» на базовом уровне обучения — общеобразовательное и общекультурное развитие обучающихся через обеспечение возможности приобретения и использования систематических геометрических знаний и действий, специфичных геометрии, возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием геометрии.

Приоритетными задачами освоения учебного курса «Геометрии» на базовом уровне в 10–11 классах являются:

формирование представления о геометрии как части мировой культуры и осознание ее взаимосвязи с окружающим миром;

формирование представления о многогранниках и телах вращения как о важнейших математических моделях, позволяющих описывать и изучать разные явления окружающего мира;

формирование умения распознавать на чертежах, моделях и в реальном мире многогранники и тела вращения;

овладение методами решения задач на построения на изображениях пространственных фигур;

формирование умения оперировать основными понятиями о многогранниках и телах вращения и их основными свойствами;

овладение алгоритмами решения основных типов задач, формирование умения проводить несложные доказательные рассуждения в ходе решения стереометрических задач и задач с практическим содержанием;

развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, критичности мышления;

формирование функциональной грамотности, релевантной геометрии: умение распознавать проявления геометрических понятий, объектов и закономерностей в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, формулировать их на языке геометрии геометрические модели, применять освоенный создавать геометрический аппарат ДЛЯ решения практико-ориентированных интерпретировать и оценивать полученные результаты.

Отличительной особенностью программы по геометрии является включение в курс стереометрии в начале его изучения задач, решаемых на уровне интуитивного познания, и определенным образом организованная работа над ними, что способствуют развитию логического и пространственного мышления, стимулирует протекание интуитивных процессов, мотивирует к дальнейшему изучению предмета.

Предпочтение отдается наглядно-конструктивному методу обучения, то есть теоретические знания имеют в своей основе чувственность предметнопрактической Развитие деятельности. пространственных представлений у обучающихся в курсе стереометрии проводится за счет решения задач на создание пространственных образов И задач на оперирование образа пространственными образами. Создание проводится опорой на наглядность, а оперирование образом – в условиях отвлечения от наглядности, мысленного изменения его исходного содержания.

Основными содержательными линиями учебного курса «Геометрия» в 10–11 классах являются: «Многогранники», «Прямые и плоскости в пространстве», «Тела вращения», «Векторы и координаты в пространстве». Формирование логических умений распределяется не только по содержательным линиям, но и по годам обучения на уровне среднего общего образования.

Содержание образования, соответствующее предметным результатам освоения программы по геометрии, распределенным по годам обучения, структурировано таким образом, чтобы овладение геометрическими понятиями и навыками осуществлялось последовательно и поступательно, с соблюдением принципа преемственности, чтобы новые знания включались в общую систему геометрических представлений обучающихся, расширяя и углубляя ее, образуя прочные множественные связи.

Общее число часов, рекомендованных для изучения учебного курса «Геометрия» — 102 часа: в 10 классе — 68 часов (2 часа в неделю), в 11 классе — 34 часа (1 час в неделю).

СОДЕРЖАНИЕ ОБУЧЕНИЯ

11 КЛАСС

Тела вращения

Цилиндрическая поверхность, образующие цилиндрической поверхности, ось цилиндрической поверхности. Цилиндр: основания и боковая поверхность, образующая и ось, площадь боковой и полной поверхности.

Коническая поверхность, образующие конической поверхности, ось и вершина конической поверхности. Конус: основание и вершина, образующая и ось, площадь боковой и полной поверхности. Усеченный конус: образующие и высота, основания и боковая поверхность.

Сфера и шар: центр, радиус, диаметр, площадь поверхности сферы. Взаимное расположение сферы и плоскости, касательная плоскость к сфере, площадь сферы.

Изображение тел вращения на плоскости. Развертка цилиндра и конуса.

Комбинации тел вращения и многогранников. Многогранник, описанный около сферы, сфера, вписанная в многогранник, или тело вращения.

Понятие об объеме. Основные свойства объемов тел. Теорема об объеме прямоугольного параллелепипеда и следствия из нее. Объем цилиндра, конуса. Объем шара и площадь сферы.

Подобные тела в пространстве. Соотношения между площадями поверхностей, объемами подобных тел.

Сечения цилиндра (параллельно и перпендикулярно оси), сечения конуса (параллельное основанию и проходящее через вершину), сечения шара.

Векторы и координаты в пространстве

Вектор на плоскости и в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по трем некомпланарным векторам. Правило параллелепипеда. Решение задач, связанных с применением правил действий с векторами. Прямоугольная система координат в пространстве. Координаты вектора. Простейшие задачи в координатах. Угол между векторами. Скалярное произведение векторов. Вычисление углов между прямыми и плоскостями. Координатно-векторный метод при решении геометрических задач.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

К концу обучения в 11 классе обучающийся научится:

оперировать понятиями: цилиндрическая поверхность, образующие цилиндрической поверхности, цилиндр, коническая поверхность, образующие конической поверхности, конус, сферическая поверхность;

распознавать тела вращения (цилиндр, конус, сфера и шар);

объяснять способы получения тел вращения;

классифицировать взаимное расположение сферы и плоскости;

оперировать понятиями: шаровой сегмент, основание сегмента, высота сегмента, шаровой слой, основание шарового слоя, высота шарового слоя, шаровой сектор;

вычислять объемы и площади поверхностей тел вращения, геометрических тел с применением формул;

оперировать понятиями: многогранник, вписанный в сферу и описанный около сферы, сфера, вписанная в многогранник или тело вращения;

вычислять соотношения между площадями поверхностей и объемами подобных тел;

изображать изучаемые фигуры от руки и с применением простых чертежных инструментов;

выполнять (выносные) плоские чертежи из рисунков простых объемных фигур: вид сверху, сбоку, снизу, строить сечения тел вращения;

извлекать, интерпретировать и преобразовывать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках; оперировать понятием вектор в пространстве;

выполнять действия сложения векторов, вычитания векторов и умножения вектора на число, объяснять, какими свойствами они обладают;

применять правило параллелепипеда;

оперировать понятиями: декартовы координаты в пространстве, вектор, модуль вектора, равенство векторов, координаты вектора, угол между векторами, скалярное произведение векторов, коллинеарные и компланарные векторы;

находить сумму векторов и произведение вектора на число, угол между векторами, скалярное произведение, раскладывать вектор по двум неколлинеарным векторам;

задавать плоскость уравнением в декартовой системе координат;

применять геометрические факты для решения стереометрических задач, предполагающих несколько шагов решения, если условия применения заданы в явной форме;

решать простейшие геометрические задачи на применение векторно-координатного метода;

решать задачи на доказательство математических отношений и нахождение геометрических величин по образцам или алгоритмам, применяя известные методы при решении стандартных математических задач;

применять простейшие программные средства и электронно-коммуникационные системы при решении стереометрических задач;

приводить примеры математических закономерностей в природе и жизни, распознавать проявление законов геометрии в искусстве;

применять полученные знания на практике: анализировать реальные ситуации и применять изученные понятия в процессе поиска решения математически сформулированной проблемы, моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры, решать практические задачи, связанные с нахождением геометрических величин.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

11 КЛАСС

Наименование раздела (темы) курса	Количество часов	Основное содержание	Основные виды деятельности обучающихся
Тела вращения	12	Сфера и шар: центр, радиус, диаметр; площадь поверхности сферы. Взаимное расположение сферы и плоскости; касательная плоскость к сфере; площадь сферы. Изображение сферы, шара на плоскости. Сечения шара	Актуализировать факты и методы планиметрии, релевантные теме, проводить аналогии. Давать определения сферы и шара, их центра, радиуса, диаметра. Определять сферу как фигуру вращения окружности. Исследовать взаимное расположение сферы и плоскости, двух сфер, иллюстрировать это на чертежах и рисунках. Формулировать определение касательной плоскости к сфере, свойство и признак касательной плоскости. Знакомиться с геодезическими линиями на сфере

Цилиндрическая поверхность, образующие цилиндрической поверхности, ось цилиндрической поверхности. Цилиндр: основания и боковая поверхность,	Объяснять, что называют цилиндром, называть его элементы. Изучать, объяснять, как получить цилиндр путем вращения прямоугольника.
--	---

образующая и ось; площадь боковой и полной поверхности. Изображение цилиндра на плоскости. Развертка цилиндра. Сечения цилиндра (плоскостью, параллельной или перпендикулярной оси цилиндра)

Выводить, использовать формулы для вычисления площади боковой поверхности цилиндра.

Изучать, распознавать развертку цилиндра.

Изображать цилиндр и его сечения плоскостью, проходящей через его ось, параллельной или перпендикулярной оси.

Находить площади этих сечений. Моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий

Коническая поверхность, образующие конической поверхности, ось и вершина конической поверхности. Конус: основание и вершина, образующая и ось; площадь боковой и полной поверхности. Усеченный конус: образующие и высота; основания и боковая поверхность. Изображение конуса на плоскости.

Объяснять, какое тело называют круговым конусом, называть его элементы.

Изучать, объяснять, как получить конус путем вращения прямоугольного треугольника. Изображать конус и его сечения плоскостью, проходящей через ось, и плоскостью, перпендикулярной к оси.

Изучать, распознавать развертку

Развертка конуса. Сечения конуса (плоскостью, параллельной основанию, и плоскостью, проходящей через вершину)	конуса. Выводить, использовать формулы для вычисления площади боковой поверхности конуса. Находить площади сечений, проходящих через вершину конуса или перпендикулярных его оси. Объяснять, какое тело называется усеченным конусом. Изучать, объяснять, как его получить путем вращения прямоугольной трапеции. Выводить, применять формулу для вычисления площади боковой поверхности усеченного конуса
Комбинация тел вращения и многогранников. Многогранник, описанный около сферы; сфера, вписанная в многогранник или в тело вращения	Актуализировать факты и методы планиметрии, релевантные теме, проводить аналогии. Решать стереометрические задачи, связанные с телами вращения, построением сечений тел вращения, с комбинациями тел вращения и многогранников на нахождение геометрических величин. Использовать при решении стереометрических задач

			планиметрические факты и методы задачи на вычисление и доказательство. Моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий
Объемы тел	5	Понятие об объеме. Основные свойства объемов тел. Объем цилиндра, конуса. Объем шара и площадь сферы	Актуализировать факты и методы планиметрии, релевантные теме, проводить аналогии. Выводить, использовать формулы объемов: призмы, цилиндра, пирамиды, конуса; усеченной пирамиды и усеченного конуса. Решать стереометрические задачи, связанные с вычислением объемов. Формулировать определение шарового сегмента, шарового слоя, шарового сектора. Применять формулы для нахождения объемов шарового сегмента, шарового сектора сектора

	10	Подобные тела в пространстве. Соотношения между площадями поверхностей, объемами подобных тел	Решать стереометрические задачи, связанные с объемом шара и площадью сферы. Моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий. Актуализировать факты и методы планиметрии, релевантные теме, проводить аналогии. Решать стереометрические задачи, связанные с соотношением объемов и поверхностей подобных тел в пространстве. Моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий
Векторы и координаты в пространстве	10	Вектор на плоскости и в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по трем некомпланарным векторам. Правило	Актуализировать факты и методы планиметрии, релевантные теме, проводить аналогии. Оперировать понятием вектор в пространстве. Формулировать правило

		параллелепипеда. Решение задач, связанных	параллелепипеда при сложении векторов.
		с применением правил действий	Складывать, вычитать векторы,
		с векторами.	умножать вектор на число.
		Прямоугольная система координат	Изучать основные свойства этих
		в пространстве. Координаты	операций.
		вектора. Простейшие задачи	Давать определение прямоугольной
		в координатах. Угол между	системы координат в пространстве.
		векторами. Скалярное	Выразить координаты вектора
		произведение векторов.	через координаты его концов.
		Вычисление углов между прямыми	Выводить, использовать формулу
		и плоскостями.	длины вектора и расстояния между
		Координатно-векторный метод	точками.
		при решении геометрических задач	Выражать скалярное произведение
			векторов через их координаты,
			вычислять угол между двумя
			векторами, двумя прямыми.
			Находить угол между прямой
			и плоскостью, угол между двумя
			плоскостями аналитическими
			методами.
			Выводить, использовать формулу
			расстояния от точки до плоскости
Повторение, обобщение	7	Основные фигуры, факты, теоремы	Решать простейшие задачи
и систематизация знаний		курса планиметрии. Задачи	на нахождение длин и углов
		планиметрии и методы их	в геометрических фигурах,

		решения. Основные фигуры, факты, теоремы курса стереометрии. Задачи стереометрии и методы их решения	применять теорему Пифагора, теоремы синусов и косинусов. Находить площадь многоугольника, круга. Распознавать подобные фигуры, находить отношения длин и площадей. Использовать при решении стереометрических задач факты и методы планиметрии
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	34		

ПЕРЕЧЕНЬ (КОДИФИКАТОР) РАСПРЕДЕЛЕННЫХ ПО КЛАССАМ ПРОВЕРЯЕМЫХ ТРЕБОВАНИЙ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ И ЭЛЕМЕНТОВ СОДЕРЖАНИЯ ПО МАТЕМАТИКЕ

В федеральных и региональных процедурах оценки качества образования используется перечень (кодификатор) распределенных по классам проверяемых требований к результатам освоения основной образовательной программы среднего образования и элементов содержания по математике.

11 КЛАСС Проверяемые требования к результатам освоения основной образовательной программы

Код проверяемого результата	Проверяемые предметные результаты освоения основной образовательной программы среднего общего образования
6	Геометрия
6.1	Оперировать понятиями: цилиндрическая поверхность, образующие цилиндрической поверхности, цилиндр, коническая поверхность, образующие конической поверхности, конус, сферическая поверхность
6.2	Распознавать тела вращения (цилиндр, конус, сфера и шар)
6.3	Объяснять способы получения тел вращения
6.4	Классифицировать взаимное расположение сферы и плоскости
6.5	Оперировать понятиями: шаровой сегмент, основание сегмента, высота сегмента, шаровой слой, основание шарового слоя, высота шарового слоя, шаровой сектор
6.6	Вычислять объемы и площади поверхностей тел вращения, геометрических тел с применением формул
6.7	Оперировать понятиями: многогранник, вписанный в сферу и описанный около сферы, сфера, вписанная в многогранник или тело вращения
6.8	Вычислять соотношения между площадями поверхностей и объемами подобных тел
6.9	Изображать изучаемые фигуры от руки и с применением простых чертежных инструментов

6.10	Выполнять (выносные) плоские чертежи из рисунков простых объемных фигур: вид сверху, сбоку, снизу; строить сечения тел вращения
6.11	Извлекать, интерпретировать и преобразовывать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках
6.12	Применять геометрические факты для решения стереометрических задач, предполагающих несколько шагов решения, если условия применения заданы в явной форме
6.13	Оперировать понятием: вектор в пространстве
6.14	Выполнять действия сложения векторов, вычитания векторов и умножения вектора на число, объяснять, какими свойствами они обладают
6.15	Применять правило параллелепипеда при сложении векторов
6.16	Оперировать понятиями: декартовы координаты в пространстве, вектор, модуль вектора, равенство векторов, координаты вектора, угол между векторами, скалярное произведение векторов, коллинеарные и компланарные векторы
6.17	Находить сумму векторов и произведение вектора на число, угол между векторами, скалярное произведение, раскладывать вектор по двум неколлинеарным векторам
6.18	Задавать плоскость уравнением в декартовой системе координат
6.19	Решать простейшие геометрические задачи на применение векторно-координатного метода
6.20	Решать задачи на доказательство математических отношений и нахождение геометрических величин по образцам или алгоритмам, применяя известные методы при решении стандартных математических задач
6.21	Применять простейшие программные средства и электронно-коммуникационные системы при решении стереометрических задач
6.22	Приводить примеры математических закономерностей в природе и жизни, распознавать проявление законов геометрии в искусстве

	Применять полученные знания на практике: анализировать
	реальные ситуации и применять изученные понятия в процессе
	поиска решения математически сформулированной проблемы,
6.23	моделировать реальные ситуации на языке геометрии,
0.23	исследовать построенные модели с использованием
	геометрических понятий и теорем, аппарата алгебры, решать
	практические задачи, связанные с нахождением геометрических
	величин

Проверяемые элементы содержания

Код	Проверяемый элемент содержания
6	Геометрия
6.1	Цилиндрическая поверхность, образующие цилиндрической поверхности, ось цилиндрической поверхности. Цилиндр: основания и боковая поверхность, образующая и ось, площадь боковой и полной поверхности
6.2	Коническая поверхность, образующие конической поверхности, ось и вершина конической поверхности. Конус: основание и вершина, образующая и ось, площадь боковой и полной поверхности. Усеченный конус: образующие и высота, основания и боковая поверхность
6.3	Сфера и шар: центр, радиус, диаметр, площадь поверхности сферы. Взаимное расположение сферы и плоскости, касательная плоскость к сфере, площадь сферы
6.4	Изображение тел вращения на плоскости. Развертка цилиндра и конуса
6.5	Комбинации тел вращения и многогранников. Многогранник, описанный около сферы, сфера, вписанная в многогранник, или тело вращения
6.6	Понятие об объеме. Основные свойства объемов тел. Теорема об объеме прямоугольного параллелепипеда и следствия из нее. Объем цилиндра, конуса. Объем шара и площадь сферы
6.7	Подобные тела в пространстве. Соотношения между площадями поверхностей, объемами подобных тел
6.8	Сечения цилиндра (параллельно и перпендикулярно оси), сечения конуса (параллельное основанию и проходящее через вершину), сечения шара

6.9	Вектор на плоскости и в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по трем некомпланарным векторам. Правило параллелепипеда. Решение задач, связанных с применением правил действий с векторами
6.10	Прямоугольная система координат в пространстве. Координаты вектора. Простейшие задачи в координатах. Угол между векторами. Скалярное произведение векторов. Вычисление углов между прямыми и плоскостями. Координатно-векторный метод при решении геометрических задач

ПЕРЕЧЕНЬ (КОДИФИКАТОР) ПРОВЕРЯЕМЫХ ТРЕБОВАНИЙ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ И ЭЛЕМЕНТОВ СОДЕРЖАНИЯ ПО МАТЕМАТИКЕ

Для проведения единого государственного экзамена по математике (далее – ЕГЭ по математике) используется перечень (кодификатор) проверяемых требований к результатам освоения основной образовательной программы среднего общего образования и элементов содержания. При проведении ЕГЭ по математике базового уровня из перечня (кодификатора) выбираются позиции, соответствующие федеральной рабочей программе по математике (базовый уровень)

Проверяемые на ЕГЭ по математике требования к результатам освоения основной образовательной программы среднего общего образования

Код проверяемого требования	Проверяемые требования к предметным результатам освоения основной образовательной программы среднего общего образования
9	Умение оперировать понятиями: точка, прямая, плоскость, пространство, отрезок, луч, величина угла, плоский угол, двугранный угол, трехгранный угол, скрещивающиеся прямые, параллельность и перпендикулярность прямых и плоскостей, угол между прямыми, угол между прямой и плоскостью, угол между плоскостями, расстояние от точки до плоскости, расстояние между прямыми, расстояние между плоскостями; умение использовать при решении задач изученные факты и теоремы планиметрии; умение оценивать размеры объектов окружающего мира; строить математические модели с помощью геометрических понятий и величин, решать связанные с ними практические задачи

10	Умение оперировать понятиями: площадь фигуры, объем фигуры, многогранник, правильный многогранник, сечение многогранника, куб, параллелепипед, призма, пирамида, фигура и поверхность вращения, цилиндр, конус, шар, сфера, площадь сферы, площадь
	поверхности пирамиды, призмы, конуса, цилиндра, объем куба, прямоугольного параллелепипеда, пирамиды, призмы, цилиндра, конуса, шара, развертка поверхности, сечения конуса и цилиндра, параллельные оси или основанию, сечение шара, плоскость, касающаяся сферы, цилиндра, конуса; умение строить сечение многогранника, изображать многогранники, фигуры и поверхности вращения, их сечения, в том числе с помощью электронных средств; умение применять свойства геометрических фигур, самостоятельно формулировать определения изучаемых фигур, выдвигать гипотезы о свойствах и признаках геометрических фигур, обосновывать или опровергать их; умение проводить классификацию фигур по различным признакам, выполнять необходимые дополнительные построения
11	Умение оперировать понятиями: движение в пространстве, параллельный перенос, симметрия на плоскости и в пространстве, поворот, преобразование подобия, подобные фигуры; умение распознавать равные и подобные фигуры, в том числе в природе, искусстве, архитектуре; использовать геометрические отношения при решении задач; находить геометрические величины (длина, угол, площадь, объем) при решении задач из других учебных предметов и из реальной жизни; умение вычислять геометрические величины (длина, угол, площадь, объем, площадь поверхности), используя изученные формулы и методы, в том числе: площадь поверхности пирамиды, призмы, конуса, цилиндра, площадь сферы; объем куба, прямоугольного параллелепипеда, пирамиды, призмы, цилиндра, конуса, шара; умение находить отношение объемов подобных фигур
12	Умение оперировать понятиями: прямоугольная система координат, вектор, координаты точки, координаты вектора, сумма векторов, произведение вектора на число, разложение вектора по базису, скалярное произведение, векторное произведение, угол между векторами; умение использовать векторный и координатный метод для решения геометрических задач и задач других учебных предметов

13	Умение выбирать подходящий метод для решения задачи;
	понимание значимости математики в изучении природных
	и общественных процессов и явлений; умение распознавать
	проявление законов математики в искусстве, умение приводить
	примеры математических открытий российской и мировой
	математической науки

Перечень элементов содержания, проверяемых на ЕГЭ по математике

Код	Проверяемый элемент содержания
7	Геометрия
7.1	Фигуры на плоскости
7.2	Прямые и плоскости в пространстве
7.3	Многогранники
7.4	Тела и поверхности вращения
7.5	Координаты и векторы