Муниципальное бюджетное общеобразовательное учреждение «Ялтинская средняя школа №2 «Школа будущего» муниципального образования городской округ Ялта Республики Крым

СОГЛАСОВАНО

Заместитель директора по BP 29.08.2024 г. _____ А. В. Пеканова

УТВЕРЖДАЮ

и.о. директора МБОУ «ЯСШ №2 «Школа будущего» _____ А.В. Пеканова Приказ № 573 от 30.08.2024 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«РОБОТОТЕХНИКА»

Направленность: техническая

Уровень программы *базовый*

Возраст обучающихся *9-13 лет (4-7 класс)*

 Срок реализации
 1 год

 Общее количество часов
 68 часов

 Количество часов в неделю
 2 часа

Составитель: Катков Вадим Андреевич

педагог дополнительного образования

Пояснительная записка

Мировые тенденции развития инженерного образования свидетельствуют о глобальном внедрении информационных технологий в образовательный процесс.

Робототехника является весьма перспективной областью для применения образовательных методик в процессе обучения за счет объединения в себе различных инженерных и естественно-научных дисциплин.

Ведущая данной дополнительной общеобразовательной идея Программа) общеразвивающей программы «Робототехника» изучении заключается информатики, моделирования законов программирования, дающих возможность построить с помощью развивающих конструкторов механические устройства, осваивать основы информатики и алгоритма, компьютерное управление и робототехнику.

Проектные работы, тематика которых включена в программу, позволяют сформировать у обучающихся умение самостоятельно приобретать и применять знания, а также способствуют развитию творческих способностей личности. Интеграция данной программы с информатикой и технологией, позволяет обучающимся лучше понять другие естественно-научные дисциплины, преподаваемые в школе.

Данная программа составлена на основе учебно-тематического плана дисциплины «Робототехника» Академии VEX Robotics. Программа изменена с учетом особенностей учебного процесса и контингента обучающихся. Учебный курс «Робототехника» является базовым, предназначен для начинающих и не требует от обучающихся специальных вводных знаний.

Новизна Программы заключается в том, что в основе обучения лежит технология проектного обучения. Метод проектов развивает познавательные навыки обучающихся, умение самостоятельно систематизировать свои знания и ориентироваться в информационном пространстве, развивает критическое мышление. Метод проектов всегда ориентирован на самостоятельную деятельность учащихся — индивидуальную, парную, групповую, которую обучающиеся выполняют в течение определенного отрезка времени.

Актуальность Программы определена тем, что она направлена на решение конструкторских, художественно конструкторских и технологических развитии творческой является основой В деятельности, конструкторско-технологического мышления, пространственного воображения, эстетических представлений, формирование внутреннего плана действий, образовательные моторики Технологические мелкой рук. ориентированы на изучение основных физических принципов и базовых технических решений, лежащих в основе всех современных конструкций и устройств.

Педагогическая целесообразность Программы заключается в том, что она позволяет сформировать у обучающихся целостную систему знаний, умений и навыков, которые позволят им понять основы конструирования, моделирования и программирования роботов.

Цель программы — сформировать и развить у обучающихся интерес к основам информатики и компьютерной грамотности, познакомив их с робототехникой, управлением, применением моделирования в жизни человека.

Задачи программы:

Обучающие:

- ознакомить школьников с основами информатики и моделирования;
- формировать у обучающихся специальные знания по предмету путем экспериментов и тематики проектных работ;
- совершенствовать у обучающихся навыки моделирования, экспериментирования и умения оценивать современные способы управления;
- обучать школьников соблюдению правил техники безопасности при обращении с приборами и оборудованием.

Развивающие:

- развивать способности владения компьютером (ноутбуков);
- развивать навыки построения моделей и научить основам работы с оборудованием и программным обеспечением;
- способствовать профессиональной ориентации обучающихся, усиливая межпредметную интеграцию знаний и умений, рассматривая прикладные вопросы технической направленности;
- формировать у обучающихся умение самостоятельно приобретать и применять знания;
- развивать пространственное мышление и воображение. <u>Воспитательные:</u>
- воспитывать умение работать в команде, эффективно распределять обязанности;
 - воспитывать творческое отношение к выполняемой работе;
- формировать потребность в творческой деятельности, стремление к самовыражению через техническое творчество.

Отличительной особенностью Программы является то, что изучение основ робототехники на базе образовательного набора по механике, мехатронике и робототехнике, набора для быстрого протипирования электронных устройств на основе микроконтроллерной платформы, образовательного набора по электронике и микропроцессорной технике дает им возможность создавать оригинальные модели, воплощать свои самые смелые конструкторские идеи, изучать язык программирования, а также участвовать в соревнованиях.

Категория обучающихся

Обучение по Программе ведется в разновозрастных группах, которые комплектуются из обучающихся 9-13 лет (4-7 класс). Рекомендуемое количество обучающихся в группе — 8 человек, но не менее 5 человек.

Сроки реализации

Программа рассчитана на 1 год. Общее количество часов в год составляет 68 часов.

Формы и режим занятий

Программа реализуется 1 раз в неделю по 2 академических часа (45 минут), между занятиями 10 минутный перерыв.

Программа включает в себя теоретические и практические занятия. Форма обучения — очная, при необходимости возможен переход на дистанционную форму обучения при согласии родителей.

Форма организации занятий – групповая.

Обучающиеся работают в паре.

Форма проведения занятий:

- на этапе изучения нового материала лекция, объяснение, рассказ, демонстрация;
- на этапе закрепления изученного материала беседа, дискуссия, практическая работа, дидактическая или педагогическая игра;
- на этапе повторения изученного материала наблюдение, устный контроль (опрос, игра), творческое задание;
- на этапе проверки полученных знаний выполнение дополнительных заданий, публичное выступление с демонстрацией результатов работы над вводным образовательным модулем.

Образовательная Программа предполагает возможность организации и проведения с обучающимися культурно-массовых мероприятий, в том числе конкурсы, марафоны, конференции и т.д., а также их участием в конкурсных мероприятиях, как форма аттестации по курсу.

Курс является модульным. После освоения каждого модуля обучающийся переводится на следующий уровень в случае освоения им программы (учитываются результаты рейтинга и конкурса проектов).

Планируемые результаты освоения Программы

<u>Предметные результаты:</u>

- формирование представлений о роли и значении робототехники в жизни;
- овладение основными терминами робототехники и использование их при про-ектировании и конструировании робототехнических систем;
- освоение основных принципов механических узлов и усвоение назначения и принципов работы датчиков различного типа;
- использование визуального языка для программирования простых робототех-нических систем;
- формирование навыков отладки созданных роботов.

Метапредметные результаты:

- сформированность у обучающихся самостоятельности в учебнопознавательной деятельности;
- развитие способности к самореализации и целеустремлённости;
- сформированность у обучающихся технического мышления и творческого подхода к работе;
 - развитость навыков научно-исследовательской, инженерноконструкторской и проектной деятельности у обучающихся;
- развитые ассоциативные возможности мышления у обучающихся.

Личностные результаты:

- сформированность коммуникативной культуры обучающихся, внимание, уважение к людям;
- развитие трудолюбия, трудовых умений и навыков, широкий политехнический кругозор;
- сформированность умения планировать работу по реализации замысла, способность предвидеть результат и достигать его, при необходимости вносить коррективы в первоначальный замысел;
- сформированность способности к продуктивному общению и сотрудничеству со сверстниками и взрослыми в процессе творческой деятельности.

Формы подведения итогов реализации программы

В процессе обучения проводятся разные виды контроля над результативностью усвоения программного материала.

Виды контроля:

- <u>Входной (предварительный) контроль</u> проверка соответствия качеств начального состояния обучаемого перед его обучением.
- <u>Первичная диагностика</u> определение образовательных ожиданий ребёнка, его отношений и образовательных потребностей *(проводится после изучения первого модуля программы)*.
- <u>Текущий контроль</u> проводится на занятиях в виде наблюдения за успехами каждого учащегося. На каждом занятии обучающийся получает определенный балл (бот) в чек лист оценки качества работы «Юного инженера-робототехника». В чек-листе учитывается присутствие ученика на занятии 1 бот, отсутствие 0 ботов. Каждое пропущенное занятие подряд без уважительной причины -3 бота. На занятиях так же учитывается время, эффективность, правильность выполнения работы, за грамотное представление своего проекта, за тесты, опросы и т.д. Боты могут сниматься за дисциплину на занятиях, за несоблюдение техники безопасности и правил поведения и т.д. Обучающиеся с низким рейтингом могут быть отчислены из группы.
- <u>Тематически контроль</u> проверка результатов обучения после прохождения модуля. Проходит в виде тестового контроля, защиты проекта, выставки работ и т.д.
- <u>Итоговый контроль</u> проверка результатов обучения после завершения образовательной программы, в конце учебного года. Проходит в виде соревнования на проверку навыков управления роботов, на программирование роботов.

По итогам прохождения всех модулей, лучшие обучающиеся будут награждаться грамотами за успехи, достигнутые в процессе обучения.

Итоговое занятие проходит в соревнованиях, турнирах с участием обучающихся других групп по данной программе.

УЧЕБНЫЙ ПЛАН

№	Наименование разделов	Количество часов			Форма	
п/п		Всего	Теория	Практика	аттестации/контроля	
Мод	уль 1					
1.	Введение в робототехнику	7	3,5	3,5	Промежуточное тестирование	
2.	Конструирование	7	3,5	3.5	Тест, защита проектов	
3.	Механизмы	11	5	6	Мини-выставка	
Мод	уль 2				1	
4.	Программирование и дистанционное управление	12	5	7	Тест, соревнование	
5.	Умные механизмы	15	1	14	Конкурс работ	
6.	Усовершенствованные умные механизмы	4	-	4	Защита работы	
Мод	уль 3		•		•	
7.	Итоговые соревнования, турниры	10	-	10	Победитель в индивидуальном и командном отборе	
8.	Итоговое занятие					
	Итого:	68	20	48		

СОДЕРЖАНИЕ УЧЕБНОГО ПЛАНА

Введение в робототехнику (7 часов)

 y_{TO} Значение техники В жизни человека. такое техническое моделирование, робототехника, электроника, мехатроника. Правила поведения на занятиях и во время перерыва. Инструктаж по технике безопасности. Знакомство с образовательными наборами: детали, способы соединения. Возможности оборудования. Правила работы c инструментами оборудованием. Система. Модель. Конструирование. Способы соединения. Эффективность. Измерения. Создание и использование измерительных приборов. Силы. Энергия. Преобразование энергии.

Конструирование (7 часов)

Данный модуль направлен на ознакомление с понятиями жесткость и прочность конструкций. Обучающиеся познакомятся с основными подходами к построению устойчивых механических систем. Разработка собственных или применение готовых модулей для построения систем на основе робототехнических конструкторов, построение и исследование модели. Выполнение заданий из кейсов.

Механизмы (11 часов)

Знакомство с основными принципами механики. Выполнение кейсовых заданий. Конструирование моделей для проведения экспериментов.

Программирование и дистанционное управление (12 часов)

Данный раздел направлен на программирование полноприводного робота. Управление роботом с помощью пульта дистанционного управления

Умные механизмы (15 часов)

Данный модуль посвящен ознакомлению с датчиками и их программирование

Усовершенствованные умные механизмы (4 часа)

Сборка робота. Программирование робота на выполнение различных задач

Итоговые соревнования, турниры (10 часов)

Целью соревнований является активизация и развитие познавательных, интеллектуальных и творческих инициатив учащихся, создание условий для практической реализации идей в области робототехники.

Итоговое занятие (2 часа)

Подведение итогов, награждение обучающихся.

Календарный учебный график

№		ения занятия	Кол-во	Тема занятия	Форма за-	Форма кон-
п/п	Группа 1	Группа 2	часов		нятия	троля
Введе	ние в роботот	ехнику (7 часо	ов)			
1.			0,5	Инструктаж по технике безопасности и правила поведения в технопарке. Экскурсия.	Теория	Опрос
			0,5	STEM инженерия и робототехника	Теория	Опрос, беседа
2.			1	Знакомство с образовательным конструктором VEX IQ	Практика	Опрос
3.			1	Система. Модель. Конструирование. Способы соединения	Теория, практика	Показ работ
4.			1	Эффективность. Измерения. Создание и использование измерительных приборов	Теория, практика	Результаты эксперимента
5.			1	Силы	Теория, практика	Результаты эксперимента
6.			1	Энергия	Теория, практика	Результаты эксперимента
7.			1	Преобразование энергии	Теория, практика	Результаты эксперимента
Конст	руирование (7	7 часов)				
8.			1	Обеспечение жесткости и прочности создаваемой конструкции	Теория, практика	Защита мини проекта
9.			1	Принципы создания устойчивых и неустойчивых конструкций	Теория, практика	Опрос
10.			1	Опора. Центр масс.	Теория, практика	Опрос
11.			1	Колесо.	Теория	Опрос

12.	1	Этапы технического проекта. Технический рисунок	Теория	Беседа
13.	1	Технический проект «Самокат»		
14.	1	Технический проект «Самокат»	Практика	Защита
Механизмы (11 часов)	,			
15.	1	Основной принцип механики. Наклонная плоскость	Теория,	Результаты
13.		осповной принции механики. Пакления изоскоств	практика	эксперимента
16.	1	Клин	Теория,	Результаты
10.	1	KJIMII	практика	эксперимента
17.	1	Рычаги. Рычаг первого рода	Теория,	Опрос
17.	1		практика	
18.	1	Di maria proporo la regeri ara po la	Теория,	Опрос, беседа
10.	1	Рычаги второго и третьего рода	практика	
19.	1	Dr. Grantina wan a wayya	Теория,	Опрос
19.		Зубчатые передачи	практика	
20.	1	2-5	Теория,	Результаты
20.		Зубчатые передачи. Редуктор и мультиплексов	практика	эксперимента
21	1	n C n	Теория,	Опрос
21.		Зубчатая передача. Резиномотор.	практика	
22	1	Ременная передача	Теория,	Результат экс-
22.			практика	перимента
22	1	11	Теория,	Результат экс-
23.		Цепная передача	практика	перимента
24	1	Изобретатели и рационализаторы. Творческий проект «Руч-	Теория,	
24.		ной миксер».	практика	
25.	1	Творческий проект «Ручной миксер».	Практика	Защита
	истанционное упра	вление (12 часов)	1	1

26.	1	Язык программирования роботов RobotC.		Опрос
27.	1	Конструкция полноприводного робота VEX IQ. Программирование поступательного и вращательного движения.	практика Теория, практика	Защита рабо- ты
28.	1	Декомпозиция. Движение по лабиринту	Теория, практика	Защита рабо- ты
29.	1	Функциональное управление роботом.	Теория, практика	
30.	1	Функциональное управление роботом.	Практика	Опрос
31.	1	Циклы в С. Движение при помощи бесконечного цикла. Счетчики.	Теория, практика	Защита рабо- ты
32.	1	Робот. Элементы робота. Пульт дистанционного управления. Ветвления в С.	Теория, практика	Защита рабо- ты
33.	1	Вложенные ветвления.	Теория, практика	Защита рабо- ты
34.	1	Элементы декомпозиции в механике. Сравнение полного, заднего и переднего приводов.	Теория, практика	Защита рабо- ты
35.	1	Двоичное кодирование. Switch case.	Теория, практика	Защита рабо-
36.	1	Функциональное программирование пульта. Цифровые и аналоговые сигналы	Теория, практика	Зачет
37.	1	Гонки роботов	Практика	Соревнование
Умные механиз	мы (15 часов)			
38.	1	Умные механизмы робота. Обзор датчиков	Теория	Опрос
39.	1	Сборка робота автопилота	Практика	
40.	1	Сборка робота автопилота	Практика	Опрос

41.	1	Бамперный переключатель. Упражнение на функции датчика	Практика	
42.	1	Бамперный переключатель. Упражнение на функции датчика	Практика	Опрос
43.	1	Контактный индикатор. Упражнение на функции датчика	Практика	
44.	1	Контактный индикатор. Упражнение на функции датчика	Практика	Опрос
45.	1	Датчик расстояния. Упражнение на функции датчика	Практика	
46.	1	Датчик расстояния. Упражнение на функции датчика	Практика	Опрос
47.	1	Датчик цвета. Упражнение на функции датчика	Практика	
48.	1	Датчик цвета. Упражнение на функции датчика	Практика	Опрос
49.	1	Гиродатчик. Упражнение на функции датчика	Практика	
50.	1	Гиродатчик. Упражнение на функции датчика	Практика	Опрос
51.	1	Интеллектуальный электромотор. Упражнение на функции датчика	Практика	
52.	1	Интеллектуальный электромотор. Упражнение на функции датчика	Практика	Опрос
Усовершенствовани	ные умные механизмы	(4 часа)		
53.	1	Сборка робота ArmBot IQ	Практика	
54.	1	Сборка робота ArmBot IQ. Программирование робота на выполнение различных задач	Практика	
55.	1	Программирование робота на выполнение различных задач	Практика	Защита рабо- ты

56.		1	Программирование робота на выполнение различных задач	Практика	Защита рабо- ты	
	Итоговые соревнования (12 часов)					
57.		1	Соревнования VEX IQ Challendge. Правила игры «Bank Shot». Сборка робота ClawBot IQ	Теория, практика		
58.		2	Сборка робота ClawBot IQ	Практика		
59.		1	Матчи на испытание навыков управления роботами	Практика		
60.		2	Матчи на испытание навыков программирования роботов	Практика		
61.		2	Командные матчи	Практика		
62.		2	Командные матчи			
63.		2	Итоговое занятие	Теория, практика	Вручение сертификатов «Юный инженерробототехни	

Ресурсное обеспечение Программы

Материально-техническое обеспечение:

- образовательный конструктор для практики блочного программирования с комплектом датчиков (8 шт.)
- базовый робототехнический набор «Базовый уровень Ардуино» (3шт.)
- образовательный набор по механике, мехатронике и робототехнике (6 шт.)
- образовательный набор для изучения многокомпонентных робототехнических систем и манипуляционных роботов (6 шт.)
- комплект для изучения операционных систем реального времени и систем управления автономных мобильных роботов (1 шт.)
- четырёхосевой учебный робот-манипулятор с модульными сменными насадками (1 шт.)
- комплект полей и соревновательных элементов (1 шт.)
- образовательный набор для изучения технологий связи и Iot (3 шт.)
- автономный робот манипулятор с колёсами всенаправленного движения (4 шт.)
- набор для быстрого прототипирования электронных устройств на основе микроконтроллёрной платформы (8 шт.)
- набор для быстрого прототипирования электронных устройств на основе микроконтроллёрной платформы со встроенным интерпретатором (8 шт.)
- набор конструкторский «Образовательный набор» (8шт.)
- базовый робототехнический набор (8 шт.)
- 3D комплект Pianeta 3D Ultimate (3 шт.)
- аналитические весы,
- спектрофотометр.
- многофункцианальная станция для механической обработки и прототипирования (3 шт.)
- 3D принтер профессиональный ZENIT 3D 300 (1 шт.)
- пластик для 3D печати (50 шт.)
- учебная лаборатория по нейротехнологиям BiTronics Lab (8 шт.)

Учебно-методическое обеспечение:

- Каширин Д.А. Основы робототехники VEX IQ. Учебно-методическое пособие для учителя. Φ ГОС/ Д.А. Каширин, Н.Д. Φ едорова. М.: Издательство «Экзамен», 2016. 136 с.
- Мацаль И.И. Основы робототехники VEX IQ. Учебно-наглядное пособие для уче-ника. ФГОС/ И.И. Мацаль, А.А. Нагорный. М.: Издательство «Экзамен», 2016. 144 с.
 - Каширин Д.А. Основы робототехники VEX IQ. Рабочая тетрадь

для ученика. ФГОС/ Д.А. Каширин, Н.Д. Федорова. – М.: Издательство «Экзамен», 2016. – 184 с.

- VEX академия. Образовательный робототехнический проект по изучению основ робототехники на базе робототехнической платформы VEX Robotics [Сайт] [Электронный ресурс].
 Режим доступа: http://vexacademy.ru/index.htm
- Занимательная робототехника. Научно-популярный портал [Электронный ре-сурс]. Режим доступа: http://edurobots.ru/2017/06/vex-iq-1/