МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 15 ИМЕНИ КАВАЛЕРА 2-Х ОРДЕНОВ «КРАСНАЯ ЗВЕЗДА» А.П. ШЕПЛЯКОВА» МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ ГОРОДСКОЙ ОКРУГ СИМФЕРОПОЛЬ

МБОУ "СОШ № 15 им. А.П. Шеплякова" г. Симферополя

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для осуществления текущего контроля успеваемости

по физике

Приложение к рабочей программе

для 10-11 классов

на 2024/2025 учебный год

Критерии оценивания учебных достижений обучающихся по физике

Критерии оценивания учебных достижений обучающихся по физике устанавливают соответствие индивидуальных образовательных достижений обучающихся планируемым результатам освоения образовательной программы, требованиям ФГОС начального и основного общего образования, которые прописываются в рабочих учебных программах.

При определении уровня учебных достижений по физике оценивается:

- владение теоретическими знаниями;
- умение использовать теоретические знания при решении задач или упражнений различного типа (расчетных, экспериментальных, качественных, комбинированных и др.);
- владение практическими умениями и навыками при выполнении лабораторных работ, наблюдений и физического практикума.

Отметка	Критерии оценивания устных ответов обучающихся				
	5 (отлично) ставится, если обучающийся:				
5	 понимает физическую сущность рассматриваемых явлений и закономерностей; умеет подтверждать законы и теории конкретными примерами и применить их в новой ситуации и при выполнении практических заданий; дает точное определение и истолкование основных понятий, законов, теорий, а также правильное определение физических величин, их единиц и способов измерения; технически грамотно выполняет физические опыты, чертежи, схемы, графики, сопутствующие ответу, правильно записывает формулы, пользуясь принятой системой условных обозначений; при ответе не повторяет дословно текст учебника, а умеет отобрать главное, обнаруживает самостоятельность и аргументированность суждений, умеет установить связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом, усвоенным при изучении других смежных предметов; умеет подкрепить ответ несложными демонстрационными опытами; умеет делать анализ, обобщения и собственные выводы по данному вопросу; умеет самостоятельно и рационально работать с учебником, дополнительной литературой и справочниками. 				
	4 (хорошо) ставится, если обучающийся:				
проявляет знания и понимание основных положений (законов, понятий, формул, теорий); поясняет явления, самостоятельно исправляет допущенные неточности; дает ответ без использования собственного плана, новых примеров; не может применять знания в новой ситуации; не использует связей с ранее изученным материалом и материалом, усвоенным при изучении других предметов; допустил одну ошибку или не более двух недочётов и может их исправить самостоятельно или с небольшой помощью учителя.					
3 (удовлетворительно) ставится, если обучающийся:					

3	 обнаруживает отдельные пробелы в усвоении вопросов курса физики, не препятствующие дальнейшему усвоению программного материала; испытывает затруднения в применении знаний, необходимых для решения задач различных типов; не объясняет конкретные физические явления на основе теорий и законов; не приводит конкретных примеров практического применения теории; воспроизводит содержание текста учебника, но недостаточно понимает
	отдельные положения, имеющие важное значение в этом тексте; — недостаточно понимает отдельные положения при воспроизведении текста учебника;
	 отвечает неполно на вопросы учителя, допуская одну-две грубые ошибки. 2 (неудовлетворительно) ставится, если обучающийся:
2	 не знает и не понимает значительную или основную часть программного материала в пределах поставленных вопросов; имеет слабо сформулированные и неполные знания; не умеет применять знания к объяснению и решению конкретных вопросов и задач по образцу; не может привести опыты, подтверждающие вопросы конкретного изученного материала; с помощью учителя отвечает на вопросы, требующие ответа «да» или «нет» при ответе допускает более двух грубых ошибок, которые не может исправить даже при помощи учителя.
	1 (неудовлетворительно) ставится, если обучающийся:
1	— не может ответить ни на один из поставленных вопросов.

Критерии оценивания самостоятельных и контрольных работ

Основным критерием оценивания учебных достижений обучающихся является умение решать задачи, сложность которых определяется:

1) количеством правильных, последовательных, логических шагов и операций, осуществляемых обучающимся. Такими шагами можно считать умение:

- уяснить условие задачи;
- записать его в кратком виде;
- сделать схему или рисунок (по необходимости);
- определить, каких данных не хватает в условии задачи, и найти их в таблицах или справочниках;
- выразить все необходимые для решения величины в единицах СИ;
- составить (в простых случаях выбрать) формулу для нахождения искомой величины;
- выполнить математические действия и операции;
- вычислить значения неизвестных величин;
- анализировать и строить графики;
- пользоваться методом размерностей для проверки правильности решения задачи;
- оценить полученный результат и его реальность;
- 2) рациональности выбранного способа решения;
- 3) типа задачи (комбинированная), типовая (по алгоритму).

Отметка	Критерии оценивания самостоятельных и контрольных работ				
	5 (отлично) ставится, если обучающийся:				
5	самостоятельно решает комбинированные типовые задачи стандартным или оригинальным способом, решает нестандартные задачи.				
	4 (хорошо) ставится, если обучающийся:				
4	самостоятельно решает типовые задачи и выполняет упражнения по одной теме, может обосновать избранный способ решения. В решении задачи допущено не более двух несущественных ошибок, получен верный ответ.				
	3 (удовлетворительно) ставится, если обучающийся:				
3	решает типовые простые задачи (по образцу), обнаруживает способность обосновать некоторые логические шаги с помощью учителя. В логических рассуждениях нет ошибок, но допущена существенная ошибка в математических действиях.				
	2 (неудовлетворительно) ставится, если обучающийся:				
2	Задача не решена. Допущены существенные ошибки в логических рассуждениях.				
	1 (неудовлетворительно) ставится, если обучающийся:				
1	Задача не решена. Обучающийся не умеет различать физические величины, единицы измерения по определенной теме, не решает задачи на воспроизводство основных формул с помощью учителя; не осуществляет простейшие математические действия.				

Критерии оценивания учебных достижений обучающихся при выполнении лабораторных и практических работ

При оценивании уровня владения обучающимся практическими умениями и навыками во время выполнения фронтальных лабораторных работ, экспериментальных задач, работ физического практикума, практических работ учитываются знания алгоритмов наблюдения, этапов проведения исследования (планирование опытов или наблюдений, сбора установки по схеме; проведение исследования, снятие показателей с приборов), оформление результатов исследования – составление таблиц, построение графиков и т.п.; вычисления погрешностей измерения (по необходимости), обоснование выводов по проведенному эксперименту или наблюдению.

Уровни сложности лабораторных или практических работ определяются:

- содержанием и количеством дополнительных заданий и вопросов по теме работы;
- различным уровень самостоятельности выполнения работы (при постоянной помощи учителя, выполнение по образцу, подробной или сокращенной инструкцией, без инструкции);
- организацией нестандартных ситуаций (формулировка обучающимся цели работы, составление им личного плана работы, обоснование его, определение приборов и материалов, нужных для ее выполнения, самостоятельное выполнение работы и оценка ее результатов).

Обязательно учитывать при оценивании соблюдение обучающимся правил техники безопасности во время выполнения лабораторных работ, практических работ и работ физического практикума.

Отметка	Критерии оценивания лабораторных и практических работ				
	5 (отлично) ставится, если обучающийся:				
5	выполняет все требования, предусмотренные для достаточного уровня, определяет характеристики приборов и установок, осуществляет грамотную обработку результатов, рассчитывает погрешности (если требует работа), анализирует и обосновывает полученные выводы исследования, обосновывает наличие погрешности проведенного эксперимента или наблюдения. Работа выполнена полностью и правильно, сделаны правильные наблюдения и выводы; эксперимент проведен с учетом правил техники безопасности; проявлены организационно-практические умения и навыки (поддерживаются чистота рабочего места и порядок на столе). Отчет о работе оформлен без ошибок, по плану и в соответствии с требованиями к оформлению отчета.				
	4 (хорошо) ставится, если обучающийся:				
4	самостоятельно монтирует необходимое оборудование, выполняет работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений. Работа выполнена правильно, сделаны правильные наблюдения и выводы, но при этом эксперимент проведен не полностью или допущены несущественные ошибки в работе с оборудованием. Допущены одна или две несущественные ошибки в оформлении письменного отчета о работе.				
	3 (удовлетворительно) ставится, если обучающийся:				
3	выполняет работу по образцу (инструкции) или с помощью учителя, результат работы ученика дает возможность сделать правильные выводы или их часть. Работа выполнена правильно не менее чем наполовину или допущена существенная ошибка в ходе эксперимента, в объяснении, в оформлении работы, в соблюдении правил техники безопасности, которая исправляется по требованию учителя. Допущены одна или две существенные ошибки в оформлении письменного отчета о выполнении лабораторной или практической работе.				
	2 (неудовлетворительно) ставится, если обучающийся:				
2	называет некоторые приборы и их назначение, демонстрирует умение пользоваться некоторыми из них. Работа выполнена менее чем наполовину. Допущены две (и более) существенные ошибки в ходе эксперимента, в объяснении, в оформлении письменного отчета о работе, в соблюдении техники безопасности, которые учащийся не может исправить даже по требованию учителя.				
	1 (неудовлетворительно) ставится, если обучающийся:				
1	не может назвать приборы и их назначение, не умеет пользоваться большинством из них, не может составить схему опыта с помощью учителя. Отсутствует отчет о выполнении работы. Работа не выполнена.				

Грубыми считаются следующие ошибки:

- незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений физических величин, единиц их измерения;
- незнание наименований единиц измерения,
- неумение выделить в ответе главное,
- неумение применять знания для решения задач и объяснения физических явлений,
- неумение делать выводы и обобщения,
- неумение читать и строить графики и принципиальные схемы,
- неумение подготовить установку или лабораторное оборудование, провести опыт, необходимые расчеты или использовать полученные данные для выводов,
- неумение пользоваться учебником и справочником по физике и технике,
- нарушение техники безопасности при выполнении физического эксперимента,
- небрежное отношение к лабораторному оборудованию и измерительным приборам.

К негрубым ошибкам следует отнести:

- неточность формулировок, определений, понятий, законов, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного-двух из этих признаков второстепенными,
- ошибки при снятии показаний с измерительных приборов, не связанные с определением цены деления шкалы (например, зависящие от расположения измерительных приборов, оптические и др.),
- ошибки, вызванные несоблюдением условий проведения опыта, условий работы измерительного прибора (неуравновешенны весы, не точно определена точка отсчета),
- ошибки в условных обозначениях на принципиальных схемах, неточность графика и др.,
- нерациональный метод решения задачи или недостаточно продуманный план устного ответа (нарушение логики, подмена отдельных основных вопросов второстепенными),
- нерациональные методы работы со справочной и другой литературой, неумение решать задачи в общем виде.

Паспорт фонда оценочных средств

по учебному предмету Физика

Класс **10-11**

№ п/п	Контролируемые разделы (темы) предмета	Наименование оценочного средства
1	Кинематика	
2	Динамика	Лабораторная работа № 1. «Исследование связи работы силы с изменением механической энергии тела на примере растягивания резинового жгута»
3		Контрольная работа №1. «Кинематика. Динамика. Законы сохранения в механике.»
4	Молекулярная физика. Термодинамика.	Лабораторная работа №2.«Исследование зависимости между параметрами состояния разряженного газа.»
5		Контрольная работа №2. «Молекулярная физика. Основы термодинамики»
7	Электрические явления	Лабораторная работа№3 «Измерение электроёмкости конденсатора»
	_	Лабораторная работа №4.«Изучение смешанного соединения резисторов»
8		Лабораторная работа №5.«Измерение ЭДС источника тока и его внутреннего сопротивления»
9		Контрольная работа №3. «Электростатика. Постоянный электрический ток. Ток в различных средах»
10		Контрольная работа №4«Электродинамика»
11	Магнитное поле	Лабораторная работа№6 «Изучение магнитного поля катушки с током»
12		Лабораторная работа№7 «Исследование действия постоянного магнита на рамку с током»
13		Лабораторная работа №8.«Исследование явления электромагнитной индукции»
14		Контрольная работа №5.«Магнитное поле. Электромагнитная индукция.»
15	Электромагнитные колебания и волны	Лабораторная работа №9. «Исследование зависимости периода малых колебаний груза на нити от длины нити и массы груза»
16		Контрольная работа №6.«Колебания и волны»
17	Оптика	Лабораторная работа №9.«Измерение показателя преломления света»
18		Лабораторная работа №10. «Исследование свойств изображение в линзе»

19		Контрольная работа №7«Оптика. Основы специальной теории относительности»
20	Астрономия	Контрольная работа №8. «Элементы астрономии и астрофизики»

10 класс

Контрольная работа №1 по теме «Кинематика. Динамика. Законы сохранения в механике.»

Контрольная работа носит тематический характер. Каждый вариант содержит задачи разных уровней сложности. Учащийся может ознакомиться со всеми заданиями и самостоятельно выбрать уровень сложности, приемлемый для него в данный момент.

Каждый вариант включает 6 заданий.

- 1,2,3 задачи первый уровень сложности. Эти задания рассчитаны на усвоение основных понятий, на простое отображение материала или несложные расчеты при узнавании и воспроизведении.
- 4.5 задачи- второй уровень сложности. Эти задания на 2-4 логических шага. Решение этих заданий требует более глубоких знаний по курсу физики и позволяет их применять в стандартных ситуациях.

6 задача- третий уровень сложности –задания, решения которых требует творческого использования приобретенных знаний и позволяет применять их в нестандартных ситуациях.

Правильность выполнения каждого задания оценивается в баллах:

1,2,3 задачи: по 1-2 балла

4-5 задачи: по 3 балла

6 задача: по 4 балла

Для оценивания результатов контрольной работы следует использовать следующие критерии:

оценки	5	4	3	2
баллы	11-15	8-10	5-7	0-4

Вариант 1.

- №1. По уравнению движения x= -270 + 12t определите начальную координату, скорость движения тела. Найдите координату в момент времени t= 50c. Какое это движение"
- №2. Ученик, выполняя лабораторную работу, заполнил таблицу. Определить начальную координату и скорость движения тела,

T, c	15	20	25
Х, м	20	25	30

- №3. Сколько времени будет падать камень до дна ущелья глубиной 80 м, если начальная скорость камня равна пулю?
- №4. Тело движется по горизонтальной поверхности. Сила трения, действующая на тело, равна 2H.
- №5. На горизонтальном полу стоит ящик массой 20 кг. Какую силу необходимо приложить к нему в горизонтальном направлении, чтобы он двигался с ускорением 4м/с^2? Коэффициент трения между полом и ящиком 0,2.
- №6. Тело движется по прямой. Под действием силы 2 Н., за 3 с. Импульс тела уменьшается. Определите импульс тела.
- №7. Чему равна потенциальная энергия растянутой на 5 см пружины, имеющей жесткость 40 Н/м?

Вариант 2.

- №1. Уравнение движения тела дано в виде x=-4-3t^2. Определите начальную координату, скорость движения и координату тела за 2 секунды. Какое это движение?
- №№2. Ученик, выполняя лабораторную работу, заполнил таблицу. Определить начальную координату и скорость движения тела.

t, c	10	20	30
Х, м	10	20	30

- №3. Камень упал со скалы и достиг дна ущелья через 30 с. Определите скорость камня в момент падения. Начальную скорость считать равной нулю.
- №4. Вычислите массу груза, висящего на пружине жесткостью 100Н/м, если удлинение пружины равно 1 см?
- №5. Тело массой 800 г. Движется по горизонтальной поверхности с ускорением 5 м/с^2 под действием сина тяга 6,4 Н. Определите коэффициент трения между телом и поверхностью.

№6. Тело движется по прямой под действием постоянной силы величиной. 10 Н импульс тела уменьшается и становиться равным 45 кг м/с. Чему равен начальный импульс тела?

№7. Укажите высоту, на которой тело массой 6 кг будет обладать потенциальной энергией 500 Дж

Контрольная работа №2 «Молекулярная физика. Основы термодинамики»

Контрольная работа для обучающихся проводится в форме письменной проверки (контрольной работы) в целях определения степени освоения обучающимися учебного материала по теме в рамках освоения основной образовательной программы среднего общего образования.

Задания ориентированы на проверку усвоения содержания тем: молекулярной физики, термодинамики.

Письменная работа в форме тестовых заданий различной степени сложности составлена в двух вариантах.

Максимальное количество баллов за выполнение работы составляет 21 балл.

Выставление отметок: отметка «5» - 80-100% - 17-21 балл, отметка «4» - 66%-79% - 14-16 баллов, отметка «3» - 50% -65% - 11-13 баллов, отметка «2» - менее 50% - 0-10 баллов.

Ответы и критерии оценивания выполнения заданий

За каждый правильный ответ на вопросы, предполагающие выбор только одного варианта ответа $(3adanue\ 1)$ – 1 балл, за вопросы с выбором нескольких вариантов ответа на соответствие (11,12,13) – 1 балл при правильном ответе на один вопрос, при верном выборе всех компонентов ответа - 2 балла.

Задания с ответом в виде числа (8,9,10,14) оцениваются в 2 балла.

Задание 15 (Задание 2) при правильном ответе оцениваются в 3 балла, если ответ неверен -0 баллов.

1 вариант

Выберите один правильный ответ (Задание 1).

1. Какая из приведенных	ниже величин	соответствует	порядку	линейных	размеров
молекул веществ?					

A) 10^{27} M

Б) 10⁻²⁷ м

 $\stackrel{\cdot}{B}$) 10^{10} m

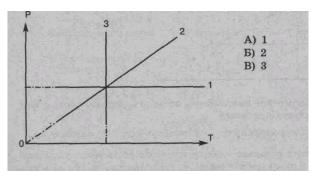
 Γ) 10^{-10} M

2. В таблице представлен диаметр D пятна, наблюдаемого через промежуток времени t на мокрой пористой бумаге, лежащей на горизонтальном столе, после того как на нее капнули каплю концентрированного раствора красителя.

Какое явление стало причиной роста размеров пятна с течением времени?

А) растворение

Б) диффузия


В) распад красителя

0 4 *t*, ч D, mm 10 11,5 13,5

- Г) броуновское движение
- 3. Какое количество вещества содержится в алюминиевой отливке массой 5,4 кг?

А) 54 моль. Б) 18О моль.

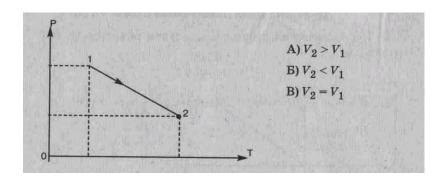
В) 200 моль. Г)540 моль.

4. Изотермический процесс в идеальном газ представлен графиком

5. Выражение pV = mRT/M является

отта,

А) законом Шарля, Б) законом Бойля-В) уравнением Менделеева-


Мариотта, Клапейрона,

Г) законом Гей-Люссака.

6. Изобарный процесс при m = const описывается уравнением:

A)
$$p_1 V_1 = p_2 V_2$$
; B) $p_1 T_2 = p_2 T_1$; B) $pV = mRT/M$; Γ) $V_1 T_2 = V_2 T_1$.

7. При нагревании газ переведен из состояния 1 в состояние 2. При этом его объем

8. Если среднюю квадратичную скорость молекул увеличить в 3 раза (при n = const), то давление идеального газа увеличится в

A) 9 pas.

Б) 3 раза.

В) 6 раз

9. Разность показаний термометров психрометра равна 7^{-0} С, а показания влажного составляют 20^{0} С. Относительная влажность воздуха в помещении равна

A) 31%

Б) 44 %

B) 52%

Γ) 14 %

10. Чему равна внутренняя энергия 5 моль одноатомного газа при температуре 27° C?

Установите соответствие

11. Физическая величина:

Единица измерения (СИ)

1) V (объем)

А) К (кельвин)

 \mathbf{B}) \mathbf{M}^3 (метр³)

2) T (температура)

В) л (литр)

Г) Дж (джоуль)

3) *F*(сила)

Д) Н (ньютон)

1	2	3

12. Температура по шкале Цельсия (°С)

Температура по шкале Кельвина (К)

1)0

A) 273 2) 36,6 Б) 236, 4

3) - 273

B) 0

 Γ) 309,6

1	2	3

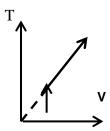
13. Физическая величина

Определяется по формуле

1) концентрация молекул;

A) m/M; Б) 3kT/2;

2) средняя кинетическая энергия молекул.


B) N/V;

 Γ) nkT/3.

1	2

Решите задачи (Задание 2):

- Температуры нагревателя и холодильника идеальной тепловой соответственно равны 380 К и 280 К. Во сколько раз увеличится КПД машины, если температуру нагревателя увеличить на 200 К?
- 15. 1. Как изменялась температура газа в ходе процесса, изображенного на рисунке?

2. Вычертить представленную диаграмму в координатах pV, VT

2 вариант

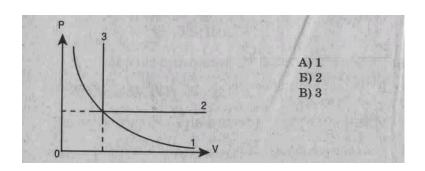
Выберите один правильный ответ (Задание 1.)

1. Какая из приведенных ниже величин соответствует порядку значения массы молекулы или соединения?

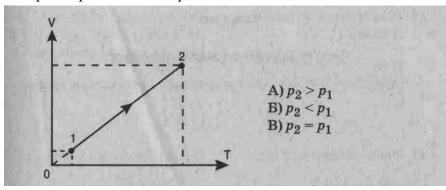
 $A. 10^{27} \, \text{кг}$

Б. 10⁻²⁷ кг

 $B. 10^{10} \, кг$


Г. 10-10 кг

- 2. Укажите пару веществ, скорость диффузии которых наибольшая при прочих равных условиях:
- А. раствор медного купороса и вода
- Б. пары эфира и воздух
- В. свинцовая и медная пластины
- Г. вода и спирт
- 3. Какое количество вещества содержится в алюминиевой ложке массы 27 г?
- А. 1 моль


Б. 2,5 моль

В. 5 моль

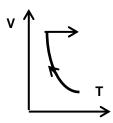
- Г. 10 моль
- 4. Изобарный процесс в идеальном газе представлен графиком

- **5.** Выражение: $p_1 V_1 = p_2 V_2$ (при T=const, m=const) является
- А) законом Бойля-Мариотта, Б) законом Гей-Люссака, В) законом Шарля,
- Г) уравнением Менделеева-Клапейрона.
- **6.** Изохорный процесс при m = const описывается уравнением
- A) $p_1 V_1 = p_2 V_2$; B) $p_1 T_2 = p_2 T_1$; B) pV = mRT/M; Γ) $V_1 T_2 = V_2 T_1$
- 7. При нагревании газ переведен из состояния 1 в состояние 2. При этом его давление

8. Если среднюю кинетическую энергию молекул увеличить в 3 раза (при n = const), то давление идеального газа увеличится в

термометр А) 7 ⁰	о психроме С Б) 1	етра при эт 3 °C В	гом показывает температуру 27^{0} C $\Gamma) 29^{0}$ C
10. Как из	зменится в	нутренняя	энергия 400 г гелия при увеличении температуры на 20^{0} C?
			Установите соответствие
11 Физич	еская вели	иина	Единица измерения (СИ)
11. Then i	сский вели	mina	•
 р (давление) п (концентрация молекул) М (молярная масса) 			 A) 1/м³ (1/метр³) Б) м³ (метр³) В) Па (паскаль) Г) Дж (джоуль) Д) кг/моль(килограмм/моль)
1	2	3	
	1		
12. Температура по шкале Цельсия (° C)			Температура по шкале Кельвина (Т, К) (Абсолютная температура)
1) 2 2) -2 3)0			A) O δ) 303 B) 273 Γ) 293
1	2	3]
1	2	3	
13. Физическая величина 1) Средняя кинетическая энергия молекул 2) давление			Определяется по формуле A) mRT/MV Б) 3 nT/2 B) m $_0V$ 2 /2 Γ) n m $_0$ v^2 /2
1	2		
			Решите задачи (Задание 2):
			м двигателе отдает холодильнику 60% теплоты, полученной емпература нагревателя, если температура холодильника

В) 6 раз.


9. Относительная влажность воздуха в комнате 44% при температуре $~20~^{0}$ С. Влажный

Б) 3 раза.

А) 9 раз.

200 K?

15. 1.Как изменялось давление в ходе процесса, представленного на рисунке?

2. Вычертить представленную диаграмму в координатах pV, VT

Контрольная работа №3 «Электростатика. Постоянный электрический ток. Токи в различных средах»

Критерии оценивания

Необходимо кратко записать условие задачи, физические величины в СИ, решение задачи, отображающее основные шаги решения в виде формул без развернутых объяснений, проверить единицы измерения искомой величины, вычислить ее значение и записать ответ.

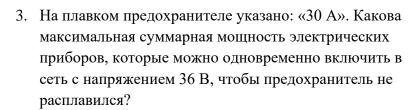
Задача оценивается так:

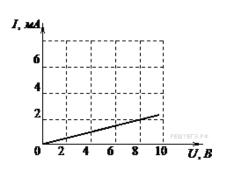
если ученик записал условие задачи в сокращенном виде, перевел единицы физических величин в СИ- 1 балла; сделал рисунок, записал основные формулы в векторном виде, спроектировал векторные величины и записал формулы в модульном виде- 1 балл; правильно выполнил математическое вычисление значения искомой величины и записал ответ (1 балла).

Критерии оценивания:

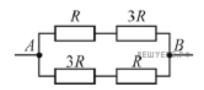
оценка «3»: от 8 баллов до 10 баллов

оценка «4»: от 11 баллов до 12 баллов


оценка «5»: от 13 баллов до 15 баллов


оценки	5	4	3	2
баллы	13-15	11-12	8-10	0-7

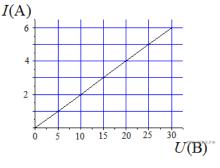
Вариант 1


1. Между двумя точечными заряженными телами сила электрического взаимодействия равна 24 мН. Если заряд одного тела увеличить в 2 раза, а заряд другого тела уменьшить в 3 раза и расстояние между телами увеличить в 2 раза, то какова будет сила взаимодействия между телами?

2. На рисунке изображен график зависимости силы тока в проводнике от напряжения между его концами. Чему равно сопротивление проводника?

4. Какая мощность выделяется в участке цепи, схема которого изображена на рисунке, если R=16 Ом, а напряжение между точками А и В равно 8 В? Ответ приведите в ваттах.

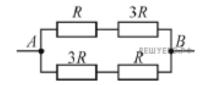
5. Напряжённость поля между пластинами плоского воздушного конденсатора равна по модулю 25 В/м, расстояние между пластинами 15 мм, ёмкость конденсатора 12 мкФ. Определите заряд этого конденсатора.

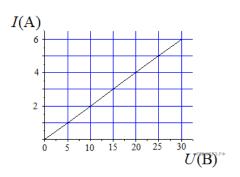

Вариант 2

1. Чему равна сила электрического тока, протекающего в цилиндрическом проводнике, если известно, что за 15 минут через его поперечное сечение проходит $9 \cdot 10^{21}$ электронов?

2. Два одинаковых маленьких отрицательно заряженных металлических шарика находятся в вакууме на достаточно большом расстоянии друг от друга. Модуль силы их кулоновского взаимодействия равен F_1 . Модули зарядов шариков отличаются в 5 раз. Если эти шарики привести в соприкосновение, а затем расположить на прежнем расстоянии друг от друга, то модуль силы их кулоновского взаимодействия станет равным F_2 . Определите отношение F_2 к F_1 .

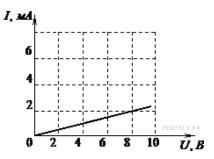
3. На графике изображена зависимость силы тока в проводнике от напряжения между его концами. Чему равно сопротивление проводника?


4. Два последовательно соединённых резистора сопротивлениями 4 Ом и 8 Ом подключены к аккумулятору, напряжение на клеммах которого равно 24 В. Какая тепловая мощность выделяется в резисторе меньшего номинала?


5. Изначально незаряженный конденсатор ёмкостью 0,5 мкФ заряжается в течение 10 с электрическим током, средняя сила которого за время зарядки равна 0,2 мА. Чему будет равна энергия, запасённая в конденсаторе к моменту окончания его зарядки?

Вариант 3

- 1. Между двумя точечными заряженными телами сила электрического взаимодействия равна 24 мН. Если заряд одного тела увеличить в 2 раза, а заряд другого тела уменьшить в 3 раза и расстояние между телами увеличить в 4 раза, то какова будет сила взаимодействия между телами?
- 2. Чему равна сила электрического тока, протекающего в цилиндрическом проводнике, если известно, что за 30 минут через его поперечное сечение проходит $9 \cdot 10^{21}$ электронов?
- 3. Какая мощность выделяется в участке цепи, схема которого изображена на рисунке, если R=16 Ом, а напряжение между точками A и B равно 8 В? Ответ приведите в ваттах.



- 4. На графике изображена зависимость силы тока в проводнике от напряжения между его концами. Чему равно сопротивление проводника?
- 5. Напряжённость поля между пластинами плоского воздушного конденсатора равна по модулю 25 В/м, расстояние между пластинами 15 мм, ёмкость конденсатора 12 мкФ. Определите заряд этого конденсатора.

Вариант 4

- 1. Два одинаковых маленьких отрицательно заряженных металлических шарика находятся в вакууме на достаточно большом расстоянии друг от друга. Модуль силы их кулоновского взаимодействия равен F_1 . Модули зарядов шариков отличаются в 5 раз. Если эти шарики привести в соприкосновение, а затем расположить на прежнем расстоянии друг от друга, то модуль силы их кулоновского взаимодействия станет равным F_2 . Определите отношение F_2 к F_1 .
- 2. На рисунке изображен график зависимости силы тока в проводнике от напряжения между его концами. Чему равно сопротивление проводника?
- 3. На плавком предохранителе указано: «40 А». Какова максимальная суммарная мощность электрических приборов, которые можно одновременно включить в сеть с напряжением 36 В, чтобы предохранитель не расплавился?

- 4. Два последовательно соединённых резистора сопротивлениями 4 Ом и 8 Ом подключены к аккумулятору, напряжение на клеммах которого равно 48 В. Какая тепловая мощность выделяется в резисторе меньшего номинала?
- 5. Изначально незаряженный конденсатор ёмкостью 0,5 мкФ заряжается в течение 30 с электрическим током, средняя сила которого за время зарядки равна 0,2 мА. Чему будет равна энергия, запасённая в конденсаторе к моменту окончания его зарядки?

Итоговая контрольная работа

Данная контрольная работа включает задания, составленные в соответствии с государственной программой средней общеобразовательной школы.

Контрольная работа по основным темам курса физики 10 класса составлена в 2 двух вариантах и рассчитана на один урок.

К каждому из семи заданий типа A(A.1-A.7) дается четыре варианта ответов, из которых правильный только один.

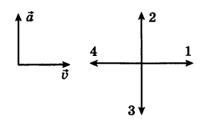
Задание типа В (B.1 - B.2) и С (C.1) – задачи, для которых надо привести полное решение.

Правильный ответ на задание А оценивается в один балл, задание В- в два балла, на задание С- в три балла.

Перевод баллов в оценки

Суммарный	Базовый уровень	0 - 4	5 - 6	7 - 9	10 - 12
балл	Профильный уровень	0 - 5	6 - 7	8 - 11	12 - 14
Оценка		2	3	4	5

Инструкция по выполнению работы


Для выполнения работы по физике отводится 40 минут. Работа состоит из 3 частей, включающих 10 заданий. Часть 1 содержит 7 заданий (A1–A7). К каждому заданию дается 4 варианта ответа, из которых правильный только один. Часть 2 содержит 2 задания (B1, B2), часть 3 состоит из 1 задачи (C1), для которых требуется дать развернутые решения. При вычислениях разрешается использовать непрограммируемый калькулятор. Внимательно прочитайте каждое задание и предлагаемые варианты ответа, если они имеются. Отвечайте только после того, как вы поняли вопрос и проанализировали все варианты ответа. Выполняйте задания в том порядке, в котором они даны. Если какое-то задание вызывает у вас затруднение, пропустите его. К пропущенным заданиям можно будет вернуться, если у вас останется время. Баллы, полученные вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

1 вариант

А.1 Автомобиль, трогаясь с места, движется с ускорением 3 м/c^2 . Через 4 с скорость автомобиля будет равна

1) 12 m/c 2) 0.75 m/c 3) 48 m/c 4) 6 m/c

А.2 На левом рисунке представлены векторы скорости и ускорения тела в инерциальной системе отсчета. Какой из четырех векторов на правом рисунке указывает направление вектора равнодействующей всех сил, действующих на это тело?

1) 1

2) 2

3) 3

4)4

А.З Импульс тела, движущегося по прямой в одном направлении, за 3с под действием постоянной силы изменился на 6 кг·м/с. Каков модуль действующей силы?

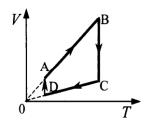
1) 0,5 H

2) 2 H

3) 9 H

4) 18 H

А.4 Камень массой 0,2 кг, брошенный вертикально вверх скоростью 10 м/с, упал в том же месте со скоростью 8 м/с. Найдите работу сил сопротивления воздуха за время движения камня.


1) 1,8 Дж

2) -3,6 Дж

3) -18 Дж

4) 36 Дж

А.5 На рисунке показан цикл, осуществляемый с идеальным газом. Количество вещества газа не меняется. Изобарному нагреванию соответствует участок

1) AB

2) BC

3) CD

4) DA

А.6 За 1 цикл рабочее тело теплового двигателя совершило работу 30 кДж и отдало холодильнику 70 кДж количества теплоты. КПД двигателя равен

1) 70%

2) 43%

3) 30%

4) 35%

А.7 Сила, с которой взаимодействуют два точечных заряда, равна F. Какой станет сила взаимодействия, если величину каждого заряда уменьшить в 2 раза?

1) 4*F*

2) $\frac{F}{2}$ 3) 2F 4) $\frac{F}{4}$

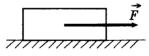
В.1 Автомобиль массой 2 т движется по выпуклому мосту, имеющему радиус кривизны 200 м, со скоростью 36 км/ч. Найдите силу нормального давления в верхней точке траектории.

В.2 Для изобарного нагревания газа, количество вещества которого 800 моль, на 500 К ему сообщили количество теплоты 9,4 МДж. Определить приращение его внутренней энергии.

С.1 Двигаясь между двумя точками в электрическом поле, электрон приобрел скорость V= 2000 км/с. Чему равно напряжение между этими точками $m_e = 9,1 \times 10^{-31}$ кг, $e = 1,6 \times 10^{-19}$ Кл.

2 вариант

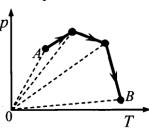
А.1 На рисунках изображены графики зависимости модуля ускорения от времени для разных видов движения по прямой. Какой график соответствует равномерному движению?



А.2 Тело массой 1 кг равномерно и прямолинейно движется по горизонтальной плоскости. На тело действует сила F= 2H. Каков коэффициент трения между телом и плоскостью?

- 2) 1
- 3) 0.5 4) 0.2

А.З Чему равно изменение импульса тела, если на него в течение 5 с действовала сила 15 H?


- 1) 3 кг·м/с

- 2) 5 κΓ·м/c 3) 15 κΓ·м/c 4) 75 κΓ·м/c

А.4 Камень брошен вертикально вверх со скоростью 10 м/с. На какой высоте кинетическая энергия камня равна его потенциальной энергии?

- 1) 2,5 M
- 2) 3, 5 M
- 3) 1,4 м
- 4) 3,2 M

А.5 В сосуде, закрытом поршнем, находится идеальный газ. Процесс изменения состояния газа показан на диаграмме. Как менялся объем газа при его переходе из состояния А в

состояние В?

- 1) все время увеличивался
- 2) все время уменьшался
- 3) сначала увеличивался, затем уменьшался
- 4) сначала уменьшался, затем увеличивался

А.6 Температура нагревателя идеальной машины Карно 700 К, а температура холодильника 420 К. Каков КПД идеальной машины?

- 1) 60% 2) 40% 3) 30% 4) 45%
- **А.7** Расстояние между двумя точечными зарядами уменьшили в 4 раза. Сила электрического взаимодействия между ними
- 1) уменьшилась в 16 раз 2) увеличилась в 16 раз
- 3) увеличилась в 4 раза 4) уменьшилась в 4 раза
- **В.1** Масса поезда 3000т. Коэффициент трения 0,02. Какова должна быть сила тяги паровоза, чтобы поезд набрал скорость 60 км/ч через 2 мин после начала движения? Движение при разгоне поезда считать равноускоренным.
- **В.2** Чему равна молярная масса газа, плотность которого $0,2~{\rm kr/m^3}$, температура 250 K, давление 19 кПа?
- **С.1** Электрон, начальная скорость которого равна нулю, начал двигаться в однородном поле напряженностью 1,5 В/м. На каком расстоянии его скорость возрастает до 2000 км/с? $m_e = 9.1 \times 10^{-31} \mathrm{kr}$, $e = 1.6 \times 10^{-19} \mathrm{Kn}$.

11 класс

Контрольная работа по теме: «Магнитное поле» Критерии оценивания:

если ученик записал условие задачи в сокращенном виде, перевел единицы физических величин в СИ, сделал рисунок, записал основные формулы в векторном виде, спроектировал векторные величины и записал формулы в модульном виде- 1 балл; правильно выполнил математическое вычисление значения искомой величины и записал ответ (1 балла).

Решение каждой задачи оценивается в 2 балла:

оценки	5	4	3	2
баллы	9-10	7-8	5-6	0-4

Вариант-1

- 1. В воздушных проводах, питающих двигатель троллейбуса, ток идет в противоположных направлениях
 - а) Как взаимодействуют воздушные провода?
 - 6) Опишите механизм взаимодействия воздушных проводов. Ответ поясните рисунком.
- в) Оказывает ли влияние на взаимодействие проводов электрическое взаимодействие зарядов?
- 2. Проводник длиной 15 см подвешен горизонтально на двух невесомых нитях в магнитном поле индукцией 60 мТл, причем линии индукции направлены вверх перпендикулярно проводнику.
- а) По проводнику пропустили ток. Сила тока 2 А. С какой силой магнитное поле действует на проводник? На рисунке укажите направление этой силы.
- 6) На какой угол от вертикали отклонятся нити, на которых висит проводник? Масса проводника 10 г.
 - в) Чему равна сила натяжения каждой нити?
- 3. Протон влетает в магнитное поле индукцией 20 мТл со скоростью 10 км/с под углом 30° к линиям магнитной индукции.
 - а) С какой силой магнитное поле действует на протон? Заряд протона $e = 1,6 \cdot 10^{-19}$ Кл.
- б) За какое время протон совершит один полный оборот вокруг линий магнитной индукции? Масса протона 1,67•10^-27 кг.
- в) На какое расстояние сместится протон вдоль линий магнитной индукции за 10 полных оборотов?

Вариант-1

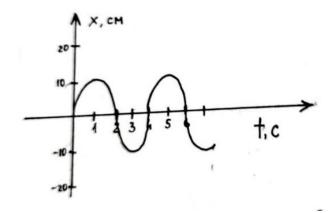
1. В двух параллельных проводниках ток проходит в одном направлении.

- а) Как взаимодействуют эти проводники?
- 6) Опишите механизм взаимодействия проводников. Ответ поясните рисунком.
- в) Чем обусловлено отталкивание двух параллельных электронных пучков?
- 2. На двух горизонтальных рельсах, расстояние между которыми 50 см. лежит металлический стержень, сила тока в котором 5 А. Рельсы и стержень находятся в однородном магнитном поле индукцией 50 мТл, направленном перпендикулярно рельсам и стержню.
- а) С какой силой магнитное поле действует на стержень? На рисунке укажите направление этой силы
- 6) При каком значении коэффициента трения стержня о рельсы он будет двигаться прямолинейно и равномерно. Масса стержня 125 г.
- в) С каким ускорением будет двигаться стержень, если силу тока в нем увеличить в 2 раза?
- 3. Электрон влетает в магнитное поле индукцией 10 м перпендикулярно линиям магнитной индукции со скорость 1 Мм/с.
- а) Чему равен радиус кривизны траектории, по которой движется электрон? Модуль заряда электрона $e = 1,6 \cdot 10^{-19}$ Кл, его масса $m = 9,1 \cdot 10^{-31}$ кг.
 - б) С какой частотой обращается электрон?
- в) Как изменится частота обращения электрона при увеличении магнитной индукции в 2 раза?

Контрольная работа по теме «Колебания и волны»

Критерии оценивания

1 - 3 задания — 2 балла


4-7 задания – 1 балл

8 задание – 3 балла

оценки	5	4	3	2
баллы	12-13	10-11	7-9	0-6

ВАРИАНТ 1

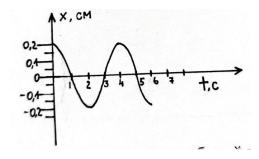
№1. На рисунке представлена зависимость координаты центра шара, подвешенного на пружине, от времени. Чему равен период колебаний?

№2. Амплитуда свободных колебаний тела равна 50 см. Какой путь проходит тело за одно полное колебание?

№3. За одно и то же время первый математический маятник совершил 40 колебаний, а второй 60. Определите отношение длины первого маятника к длине второго.

№4. Груз массой 200 г. подвешенный к пружине и совершает колебания. Как измениться частота колебаний, если к той же пружине вместо этого груза подвесить тело массой 0.8 кг?

№5. Как измениться длина волны, если скорость распространения увеличиться в 4 раза, а период колебания уменьшиться в 2 раза?


№6. Через 3 с после вспышки молнии наблюдатель услышал гром. На каком расстоянии от него ударила молния? Скорость звука в воздухе 330 м/с.

№7. Как период колебаний контура, если его индуктивность увеличить в 10 раз, а ёмкость уменьшить в 2,5 раза?

№8. Индуктивность катушки равна $0.5~\Gamma$ н. Уравнение колебаний силы тока в ней имеют вид $i=0.8~\cos(12.5~\pi t)$, где все величины выражены в СИ. Определите амплитуду напряжения в катушке.

ВАРИАНТ 2

№1. На рисунке показан график колебания одной из точек струны. Чему равна частота этих колебаний

№2 Амплитуда свободных колебаний тела равна 30 см. Какой путь проходит тело за 5 полных колебаний?

№3. Длина первого маятника 2 м. второго 2,25 м. За некоторое время первый маятник совершил 15 колебаний. Сколько колебаний за тот же промежуток времени совершил второй маятник?

№4. Груз массой 0,16 г. подвешенный на пружине, совершает свободные гармонические колебания. Какой массы новый груз нужно подвесить, вместо первого, чтобы частота колебаний увеличилась в 2 раза?

№5. Во сколько раз увеличиться скорость распространения волны, если длина волны возрастёт в 3 раза, а период колебаний останется без изменений?

№6. На расстоянии 400 м от наблюдателя рабочие вбивают сваи с помощью копра. Каково время между видимым ударом молота о сваю и звуком удара, услышанным наблюдателем? Скорость звука в воздухе 340 м/с..

№7. Колебательный контур состоит из конденсатора электроёмкостью С и катушки индуктивностью L. Как измениться частота электромагнитных колебаний в этом контуре, если электроёмкость конденсатора и индуктивность катушки увеличить в 1,5 раза?

№8. Напряжение на выходных клеммах генератора меняется по закону $u=280 \cos(100t)$. Определите действующее значение силы тока, если индуктивность катушки $0,25 \Gamma$.

Контрольная работа по теме «Оптика. Основы специальной теории относительности.» Критерии оценивания

Каждое задание 1-20 оценивается в 1 балл.

Ì	оценки	5	4	3	2
	баллы	18-20	14-17	10-13	0-9

	Оаллы	10-20	14-1/	10-13	0-9		
1.5	v	U		риант.			
1. Геометричес							
			ния в пр	озрачных	к средах	световой э	нергии на основе
представления		•					
б) глубоко расс						гвие с вещес	ством.
2. Основополо	жником ко			ии света		3.5	
а) Рёмер;		б) Ньют			в)	Максвелл;	
г) Аристотель;		д) Гюйго					
3. В чем сущно		-	-				
							ощееся зеркало;
б) для измерен			ранения	света исп	ользовал	іся "прерыв	атель" –
вращающееся							
4. Для того что				л с падаю	ощим уго	ол 20°, угол	падения
светового луча	должен бы	•	ощим:				
a) 40°		б) 30°			в) 20°		г) 10°
5. Выясните, ч					ходе све	тового луча	и в оптически
более плотную				лотной?			
а) угол падения		• 1	ения				
б) свет проход	•						
в) угол падени							
г) угол падения							
6. Определяя г.			лаз"				
а) мы точно оп	-						
б) дно кажется							
в) дно кажется							
7. Какие линзы		•		•			
а) Вогнутыми -	-	ых края тол	іще, чем	середина	і; выпукл	пыми — у к	оторых края
тоньше, чем се							
б) Вогнутыми	— у которі	ых края тог	ньше, че	м середин	на; выпу	клыми — у	которых края
толще, чем сер							
в) Вогнутыми -		-	-	ащенным	и внутрь	; выпуклым	и — с
поверхностями	-		•				
8. Выберите фо	ормулу, по				•	•	:
a) $v = 1/T$		б) $D = 1/F$			R = U/2		Γ) $q = Q/m$
9. Оптические	силы линз	равны 5 ді	тр и 8 д				стояния?
а) 2 м и 1,25 м					20 ми 1		
в) 2 см и 1,25 с				/) 20 см и	12,5 см	
10. Чему равно		•	е линзы				
a) $\Gamma = H/h$		$6) \Gamma = f/F$,	$\Gamma = d/f$		Γ) Γ = D/d
11. С какой фи	зической х	арактерист	гикой св	язано раз	пичие в і	цвете?	
a) co cropocti i	O CDATO						

- а) со скоростью света;
- б) с интенсивностью света;
- в) с показателем преломления среды;
- г) с частотой колебаний.
- 12. Длина волны для фиолетового цвета равна:

- a) $2 \cdot 10^{-7}$ M B) $6 \cdot 10^{-7}$ M Γ) $8 \cdot 10^{-7}$ M
- 13. В чем заключается явление интерференции света?
- а) в усилении одного светового пучка другим;
- б) в получении спектра белого света;
- в) в огибании светом препятствий;
- г) в наложении световых волн.
- 14. Какие световые волны называются когерентными?
- а) имеющие одинаковые частоты;
- б) имеющие одинаковые частоты и разность начальных фаз, равную нулю;
- в) имеющие одинаковые частоты и постоянные разности фаз.
- 15. Условие максимума в дифракционной картине, полученной с помощью решетки, $d \sin \varphi = k\lambda$. В этой формуле d это:
- а) разность хода между волнами,
- б) период решетки,
- в) ширина максимума на экране.
- 16. Масса тела m = 1 кг. Вычислите полную его энергию.
- a) 3·10⁸ Дж

б) 9 · 10⁸ Дж

в) 9·10¹⁶ Дж

- г) $3 \cdot 10^{16}$ Дж
- 17. Свечение экрана телевизора относится к:
- а) хемилюминесценции;
- б) катодолюминесценции;
- в) электролюминесценции;
- г) фотолюминесценции.
- 18. Плазма дает:
- а) спектр поглощения;
- б) полосатый спектр;
- в) линейчатый спектр;
- г) сплошной спектр.
- 19. Каков диапазон частот инфракрасного излучения?
- а) от 10⁻⁶ до 10⁻⁷ Гц
- б) от 10-8 до 10-11 Гц
- в) от $6.6 \cdot 10^{-18}$ до $6.6 \cdot 10^{-15}$ Гц
- г) от $3 \cdot 10^{11}$ до $3 \cdot 10^{14}$ Гц
- 20. Перечислите виды электромагнитных излучений в порядке возрастания их длин волн:
- а) гамма-излучение, рентгеновское, ультрафиолетовое, видимое, инфракрасное, радиоизлучение, низкочастотное;
- б) низкочастотное, радиоизлучение, инфракрасное, видимое, ультрафиолетовое, рентгеновское, гамма-излучение;
- в) низкочастотное, радиоизлучение, инфракрасное, видимое, рентгеновское, гамма-излучение, ультрафиолетовое;
- г) гамма-излучение, рентгеновское, ультрафиолетовое, видимое, инфракрасное, низкочастотное, радиоизлучение.

II вариант.

- 1. Что называется световым лучом?
- а) геометрическое место точек, имеющих одинаковые фазы в момент времени;
- б) линия, указывающая направление распространения световой энергии;
- в) воображаемая линия, параллельная фронту распространения световой волны.
- 2. Кто впервые определил скорость света?
- а) Майкельсон;

б) Галилей;

- г) в наложении световых волн.
- 15. Условие максимума в дифракционной картине, полученной с помощью решетки, $d\sin \varphi = k\lambda$. В этой формуле выражение $d\sin \varphi$:
- а) разность хода между волнами,
- б) период решетки,
- в) ширина максимума на экране.
- 16. Масса тела m = 2 кг. Вычислите полную его энергию.
- а) $6 \cdot 10^8$ Дж

б) $36 \cdot 10^8$ Дж

в) $6 \cdot 10^{16} \, \text{Дж}$

г) $18 \cdot 10^{16} \, \text{Дж}$

- 17. Свечение лампы дневного света относится к:
- а) хемилюминесценции;
- б) катодолюминесценции;
- в) электролюминесценции;
- г) фотолюминесценции.
- 18. Линейчатый спектр дает вещество, находящееся в
- а) жидком молекулярном состоянии;
- б) газообразном молекулярном состоянии;
- в) газообразном атомарном состоянии;
- г) твердом состоянии.
- 19. Каков диапазон частот рентгеновского излучения?
- а) от $3 \cdot 10^{16}$ до $3 \cdot 10^{20}$ Гц
- б) от 10-8 до 10-11 Гц
- в) от 6,6 · 10^{-18} до $6.6 \cdot 10^{-15}$ Гц
- г) от 10^{-6} до 10^{-7} Гц
- 20. Перечислите виды электромагнитных излучений в порядке убывания их длин волн:
- а) гамма-излучение, рентгеновское, ультрафиолетовое, видимое, инфракрасное, радиоизлучение, низкочастотное;
- б) низкочастотное, радиоизлучение, инфракрасное, видимое, ультрафиолетовое, рентгеновское, гамма-излучение;
- в) низкочастотное, радиоизлучение, инфракрасное, видимое, рентгеновское, гамма-излучение, ультрафиолетовое;
- г) гамма-излучение, рентгеновское, ультрафиолетовое, видимое, инфракрасное, низкочастотное, радиоизлучение.

Контрольная работа по теме «Квантовая физика»

Инструкция по выполнению работы

Для выполнения работы отводится 40 минут. Работа состоит из 3 частей, включающих 12 заданий.

Часть A содержит 9 заданий (A1 – A8). К каждому заданию дается несколько вариантов ответа, из которых правильный только один.

Часть B содержит 2 задания (B1 – B2), на которые следует дать краткий ответ в виде числа. Значение искомой величины следует выразить в тех единицах физических величин, которые указаны в условии задания. Если такого указания нет, то значение величины следует записать в Международной системе единиц (СИ).

Часть С состоит из одного задания (С1), на которое требуется дать развернутый ответ.

Критерии оценивания

Каждое задание части А и В оценивается в 1 балл, части С – 3 балла.

0-5 баллов 6-8 баллов **«3»** 9-11 баллов **«**4**»** 12-14 баллов **«5»**

Вариант 1

А1. β - излучение представляет собой поток

1) ядер гелия 2) электронов

3) протонов

4) нейтронов

А2. Чему равно протонов в ядре ${}^{238}_{92}U$?

1) 92

2) 238

3) 146

А3. Какой заряд имеет ядро согласно планетарной модели атома Резерфорда?

1) положительный 2) отрицательный

3)ядро заряда не имеет

- А4. Под дефектом масс понимают разницу
 - 1) между массой атома и его массой ядра
 - 2) между массой атома и его массой электронной оболочки
 - 3) между суммой масс всех нуклонов и массой ядра
 - 4) между суммой масс всех нейтронов и массой протонов
- А5. Периодом полураспада называется время, в течение которого
 - 1) распадутся все радиоактивные ядра
 - 2) распадется часть радиоактивных ядер
 - 3) распадется половина радиоактивных ядер
 - 4) распадется доля радиоактивных ядер
- **A6**. Что используется в качестве горючего в ядерных реакторах?

1) уран 2)графит 3) бериллий

- Торий $^{230}_{90}$ Th может превратиться в радий $^{226}_{88}$ Ra в результате A7.
 - 1) одного В-распада
 - 2) одного α-распада
 - 3) одного β- и одного α-распада
 - 4) испускания у-кванта
- Какая ядерная реакция может быть использована для получения цепной реакции **A8**. деления?

1)
$${}^{243}_{96}$$
 Cm + ${}^{0}_{0}$ n \longrightarrow ${}^{40}_{0}$ n + ${}^{42}_{42}$ Mo + 54 Xe
1) ${}^{6}_{54}$ C \longrightarrow ${}^{3}_{54}$ Li + ${}^{3}_{54}$ Li
227 1 129 99
3) 90 Th + ${}^{9}_{0}$ n \longrightarrow ${}^{49}_{54}$ In + ${}^{41}_{14}$ Nb

4)
$$^{243}_{96}$$
 Cm \longrightarrow $^{108}_{43}$ Tc $^{141}_{53}$ I

При бомбардировке бериллия α-частицами была получена новая частица. ${}^{9}_{4}Be + {}^{4}_{2}He \rightarrow {}^{12}_{6}C + ?$

Что это за частица?

- 1) нейтрон
- 2) протон
- 3) электрон
- **В1.** Рассчитайте энергию связи ядра кислорода $^{27}_{13}Al$. Масса ядра 26,98146 а.е.м. *Ответ* выразите в МэВ и округлите до иелого.

1 атомная елинина массы эквивалентна

931,5 МэВ

масса протона 1,00728 а.е.м.

масса нейтрона 1,00866 а.е.м.

Определите энергию, выделившуюся при протекании следующей реакции: **B2**.

$$_{3}^{7}\text{Li} + _{1}^{1}\text{H} \longrightarrow _{2}^{4}\text{He} + _{2}^{4}\text{He}$$

Ответ выразите в МэВ и округлите до иелого

Масса атомов

водорода 1Н 1,00728 а.е.м.

лития $\frac{7}{3}$ Li 7,01601 a.e.м.

⁴ He 4,0026 а.е.м. гелия

931,5 МэВ 1 атомная единица массы эквивалентна

С1. Найдите, какая доля атомов радиоактивного изотопа кобальта распадается за 144 дня, если период его полураспада 72 сут.

Вариант 2

- **A1.** α излучение представляет собой поток
 - 1) ядер гелия 2) электронов
- 3) протонов 4) нейтронов
- **А2.** Электронная оболочка в атоме алюминия $^{27}_{13}Al$ содержит
 - 27 электронов
- 40 электронов
- 3) 13 электронов
 4) 14 электронов
- А3. Какой заряд имеет атом согласно планетарной модели атома Резерфорда?
 - 1) положительный 2) отрицательный
- 3) атом электрически нейтрален
- А4. Изотопы данного элемента отличаются друг от друга
 - 1) числом протонов в ядре
 - 2) числом нейтронов в ядре
 - 3) числом электронов на электронной оболочке
 - 4) радиоактивностью
- А5. Активностью радиоактивного вещества называется
 - 1) быстрота распадения ядер
 - 2) число распадов в секунду
 - 3) быстрота изменения концентрации радиоактивных ядер
 - 4) время опасности радиоактивных ядер

распадов
1) одного α и одного β
2) одного α и двух β
3) двух α и одного β
4) двух α и двух β
А7. Какие силы удерживают нуклоны в ядре?
1) гравитационные 2) электромагнитные 3) ядерные
А8. Какая из приведенных ниже ядерных реакций соответствует термоядерной реакции?
1) ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$
2) ${}^{14}N + {}^{4}He \rightarrow {}^{17}_{8}O + {}^{1}_{1}H$
3) ${}_{3}^{6}Li+{}_{0}^{1}n \rightarrow {}_{2}^{4}He+{}_{1}^{3}H$
А9. Вторым продуктом ядерной реакции ${}_{3}^{7}Li+{}_{1}^{1}H \rightarrow {}_{2}^{4}He+?$ является
1) нейтрон 2) протон 3) электрон 4) альфа-частица
В1. Рассчитайте энергию связи ядра кислорода $^{17}_{8}O$. Масса ядра 16,99913 а.е.м. <i>Ответ</i>
выразите в МэВ и округлите до целого.
1 атомная единица массы эквивалентна 931,5 МэВ
масса протона 1,00728 а.е.м.
масса нейтрона 1,00866 а.е.м. B2. Определите энергию, выделившуюся при протекании следующей реакции
${}_{5}^{10}B + {}_{0}^{1}n \rightarrow {}_{3}^{7}Li + {}_{2}^{4}He$
Ответ выразите в МэВ и округлите до целого
Масса атомов
бора ${}^{10}_{5}B$ 10,01294 а.е.м.
лития ⁷ 3 Li 7,01601 a.e.м.
гелия ² He 4,0026 а.е.м.
масса нейтрона ${}_{0}^{1}n$ 1,00866 а.е.м.
1 атомная единица массы эквивалентна 931,5 МэВ
С1) Период полураспада радиоактивного изотопа хрома равен 28 суток. Через какое время
распадется 75 % атомов?

Полоний $^{214}_{84}$ Ро превращается в висмут $^{210}_{83}$ Вi в результате радиоактивных

A6.

Контрольная работа по теме «Элементы астрономии и астрофизики»

Вариант 1

- 1. Какая разница между геоцентрической и гелиоцентрической системами мира?
- 2.Почему с поверхности Земли мы видим только одну сторону Луны? Ответ объяснить.
- 3.Венера расположена дальше от Солнца чем Меркурий, почему температура на ее поверхности выше, чем на Меркурии?
- 4. Какие слои различают внутри Солнца и в его атмосфере?
- 5. Что такое «солнечный ветер»? Ответ объяснить.
- 6.Почему пульсары периодически изменяют интенсивность излучения?
- 7. Что такое «Черная дыра»? Ответ объяснить.
- 8. Перечислите основные виды галактик.
- 9. Что находится в центре Млечного пути?
- 10. Каков возраст Вселенной?

Вариант 2

- 1.В какие дни года Солнце восходит в точке востока и заходит в точке запада?
- 2.В какое время года для северного полушария орбитальная скорость Земли наибольшая? Ответ объяснить.
- 3. Что является источником энергии Солнца?
- 4. Почему солнечные пятна выглядят темнее, чем фотосфера?
- 5. Чем предположительно станет Солнце в конце своей эволюции?
- 6. Что такое сверхновая звезда? Ответ объяснить.
- 7. Что можно определить по диаграмме спектр-светимость?
- 8. Что можно узнать из закона Габбла?
- 9. Может ли происходить столкновение Галактик? Ответ объяснить.
- 10. Какие наблюдения указывают на то, что Вселенная не статична, а непрерывно меняется?

Критерии оценивания контрольной работы по теме «Строение Вселенной»:

Оценка 5 ставится, если учащиеся выполнили верно 10 задач, ответы даны с подробным объяснением.

Оценка 4 ставится, если верно и полностью правильно решены и записаны 8-9 задач, в 10 задаче допущены ошибки, ответы даны с подробным объяснением.

Оценка 3 ставится, если верно и полностью правильно решены и записаны 6-7 задач, ответы даны с подробным объяснением, либо решено более 7 задач, но нет объяснений к вопросам.

Оценка 2 ставится, если решено менее 6 задач или в каждой из 10 задач допущены какиелибо грубые ошибки.

Итоговая контрольная работа

Контрольная работа предполагает проверку знаний учащихся по всем темам курса физики 11 класса на базовом уровне.

Критерии оценивания

	
балл	оценка
0-12	2
13-17	3
18 - 22	4
23 -25	5

Вариант 1

1 Выберите правильное утверждение их нижеперечисленных:

- а) Одноименные заряды притягиваются, разноименные отталкиваются;
- b) Разноименные заряды притягиваются так же, как и одноименные;
- с) Одноименные заряды отталкиваются, разноименные притягиваются;
- d) Одноименные заряды отталкиваются так же, как и разноименные.
- 2 Определите каким из свойств обладает магнитное поле
 - а) Силовые линии магнитного поля замкнуты;
 - b) Силовые линии магнитного поля не могут быть замкнутыми;
 - с) Источником магнитного поля являются намагниченные тела, проводники с током, но не движущиеся заряженные тела и частицы;
 - d) Источником магнитного поля являются намагниченные тела и только.
- 3 Какова потенциальная энергия тела, находящегося на высоте 2км массой 5кг.
 - а) 10МДж
 - b) 5кДж
 - с) 100кДж
 - d) 2,5Дж
- 4 Как обозначается магнитный поток?
 - a) B
 - b) Φ
 - c) A
 - d) C
- 5 Какая величина изменяется с течением времени в переменном токе?
 - а) ЭДС
 - b) Частота
 - с) Вектор магнитной индукции
 - d) Площадь контура
- 6 Укажите правильную формулировку первого постулата СТО.
 - а) Все процессы природы протекают одинаково во всех неинерциальных системах отсчета;
 - b) Все процессы природы во всех инерциальных системах отсчета протекают по-разному;
 - с) Все процессы природы протекают одинаково во всех неинерциальных и инерциальных системах отсчета;
- d) Все процессы природы протекают одинаково во всех инерциальных системах отсчета; 7 Выберите верно записанную формулу для определения сокращения длины.

a)
$$l = l_0 \sqrt{1 + \frac{\vartheta^2}{c^2}}$$

b)
$$l = l_0 \sqrt{1 - \frac{\theta^2}{c^2}}$$

b)
$$l = l_0 \sqrt{1 - \frac{\vartheta^2}{c^2}}$$

c) $l = l_0 \sqrt{1 - \frac{c^2}{\vartheta^2}}$

d)
$$l = l_0 \sqrt{1 + \frac{c^2}{\vartheta^2}}$$

8 Определите верное определение.

- а) Дифракция света это явление огибания светом препятствий малых размеров и попадания его в область геометрической тени.
- b) Интерференция света это явление огибания светом препятствий малых размеров и попадания его в область геометрической тени.
- с) Дифракция света это явление, возникающее при наложении волн, посылаемых двумя когерентными источниками (щелями) малого размера.
- d) Интерференция света это явление, возникающее при наложении волн, посылаемых двумя некогерентными источниками (щелями) малого размера.

9 Падающий луч, перпендикуляр к границе раздела сред в точке падения и преломленный луч лежат в одной плоскости, причем отношение синуса угла падения к синусу угла преломления постоянно для данной пары сред и равно показателю преломления второй среды относительно первой — это

- а) Закон преломления
- b) Дифракция
- с) Закон падающего луча
- d) Закон отражения

10 Укажите формулу тонкой линзы для рассеивающей линзы.

a)
$$\frac{1}{F} = -\frac{1}{f} - \frac{1}{d}$$

$$b) \quad \frac{1}{F} = \frac{1}{f} - \frac{1}{d}$$

$$c) \quad \frac{1}{F} = \frac{1}{f} + \frac{1}{d}$$

d)
$$-\frac{1}{F} = \frac{1}{f} - \frac{1}{d}$$

11 Полосатый спектр – это

- а) Совокупность линий четких с одного края и размытых с другого.
- b) Спектр состоящий из отдельных, четких, ярких линий на черном фоне.
- с) Спектр спектральные цвета, которого непрерывно переходят один в другой.
- d) Совокупность черных линий на фоне непрерывного перехода одного спектрального цвета в другой.

12 Диапазон длин волн инфракрасного излучения.

- а) От 10 до 400 нм
- b) От 380 до 760 нм
- с) От 760 до 3000 нм
- d) От 10⁻⁸ до 10⁻¹² м

13 Выберите из нижеперечисленных уравнение Эйнштейна для фотоэффекта.

a)
$$h\nu = A_{\text{Bbl}X} + \frac{m\vartheta}{2}$$

b)
$$h\nu = A_{ebix}$$

c)
$$h\nu = \frac{m\vartheta}{2}$$

d)
$$h\nu = A_{ebix} + \frac{m\vartheta_{max}^2}{2}$$

14 Формула $\lambda_{max} = \frac{b}{T}$ соответствует

- а) Закону Стефана-Больцмана
- b) Закону Вина
- с) Красной границе
- d) Ультрафиолетовой катастрофе

15 Какой элемент образуется после одного $\alpha-pacna\partial a$ ядра тома урана $^{238}_{\ 92}U$

- a) $^{234}_{99}Th$
- b) $^{222}_{86}Rn$
- c) $^{226}_{88}Ra$
- d) $^{218}_{84}Po$

16 Укажите формулу β — электронного распада

- a) $^{1}_{1}p \rightarrow ^{1}_{0}n + ^{0}_{1}e + \nu$
- b) $^{1}_{1}p \rightarrow ^{1}_{0}n + ^{0}_{-1}e + \tilde{v}$
- c) ${}_{1}^{1}p \rightarrow {}_{0}^{1}n + {}_{1}^{0}e + \tilde{v}$
- d) $^{1}_{1}p \rightarrow ^{1}_{0}n + ^{0}_{-1}e + \nu$

17 Определите минимальную энергию $\gamma - \kappa ванта$, достаточную для осуществления реакции:

$$_{1}^{2}H + \gamma \rightarrow _{1}^{1}H + _{0}^{1}n.$$

- а) Поглощается, 22 МэВ
- b) Испускается, 22 МэВ
- с) Поглощается, 2,2 МэВ
- d) Испускается, 2,2 МэВ

18 Выберите название книги, которую перевели на арабский, как Альмагест?

- а) Книга истолкование основных начал астрономии
- b) Математический трактат в XIII книгах
- с) О вращении небесных сфер
- d) Новые астрономические таблицы

19 Каким образом обозначаются классы светимости звёзд?

- а) Арабскими цифрами
- b) Латинскими буквами
- с) Римскими цифрами
- d) Русскими заглавными буквами

20 Кем была предложена нынешняя классификация галактик?

- а) Эдвин Хаббл
- b) Мэлвин Слайдер
- с) Харлоу Шепли
- d) Артур Эддингтон

21 Определите единицу измерения работы.

- а) Вт
- b) B
- с) Дж
- d) Πa

22 Определите энергию которой обладает яблоко массой 250 г, висящее на ветке на высоте 2 м.

- a) 5 B
- b) 50 A
- с) 50 Дж
- d) 5 Дж

23 Два заряженных шарика находятся в вакууме на расстоянии 10 см, друг от друга и отталкиваются с силой $6*10^{-5}H$. Чему будет равна сила взаимодействия этих шариков, если один из них отодвинуть еще на 10 см?

- a) 15 H
- b) 1,5 H
- c) 150 H
- d) 15A

24 Масса тела равна 500 г. Какое ускорение приобретет тело под действием силы 0,2 Н?

- a) 0.4 m/c^2
- b) 4 m/c^2
- c) 4 M
- d) 4m/c

25 Какие взаимодействия определяют устойчивость ядер в атомах?

- а) Электромагнитные
- b) Гравитационные
- с) Ядерные
- d) Слабые

Вариант 2

1 Укажите правильную формулировку второго постулата СТО.

- а) Скорость света в вакууме одинакова во всех инерциальных системах отсчета и не зависит от движения источника или приемника света;
- b) Скорость света в вакууме одинакова во всех инерциальных системах отсчета, но зависит от движения источника или приемника света;
- с) Скорость света в вакууме одинакова во всех неинерциальных системах отсчета и не зависит от движения источника или приемника света;
- d) Скорость света в вакууме одинакова во всех неинерциальных системах отсчета и зависит от движения источника или приемника света;

2 Какая из формул является формулой Томсона для расчета периода электромагнитных колебаний в идеальном колебательном контуре?

a)
$$T = 2\pi\sqrt{LC}$$

b)
$$T = 2\pi \sqrt{\frac{l}{g}}$$

c)
$$T = 2\pi \sqrt{\frac{m}{k}}$$

d)
$$T = \frac{1}{v}$$

3 Какова кинетическая энергия тела массой 2 кг двигающегося с постоянной скоростью 12 м/с?

- а) 12 Дж
- b) 144 кДж
- с) 144 Дж
- d) 144*10³ Дж

4 Выберите верно записанную формулу для определения замедления времени.

a)
$$\tau = \frac{\tau_0}{\sqrt[3]{1 - \frac{\vartheta^2}{c^2}}}$$

b)
$$\tau = \frac{\iota_0}{\sqrt[3]{1 - \frac{c^2}{\vartheta^2}}}$$

b)
$$\tau = \frac{\tau_0}{\sqrt[3]{1 - \frac{c^2}{\vartheta^2}}}$$
c)
$$\tau = \frac{\tau_0}{\sqrt{1 - \frac{c^2}{\vartheta^2}}}$$

d)
$$\tau = \frac{\tau_0}{\sqrt{1 - \frac{\vartheta^2}{c^2}}}$$

5 Определите верное определение.

- а) Дифракция света это явление, возникающее при наложении волн, посылаемых двумя когерентными источниками (щелями) малого размера.
- b) Интерференция света это явление огибания светом препятствий малых размеров и попадания его в область геометрической тени.

- с) Дифракция света это явление, возникающее при наложении волн, посылаемых двумя некогерентными источниками (щелями) малого размера.
- d) Интерференция света это явление, возникающее при наложении волн, посылаемых двумя когерентными источниками (щелями) малого размера.

6 Падающий луч, перпендикуляр к границе раздела двух сред в точке падения и отраженный луч лежат в одной плоскости, причем угол падения равен углу отражения — это

- е) Закон преломления
- f) Дифракция
- g) Закон падающего луча
- h) Закон отражения

7 Почему в вакууме не происходит дисперсия света?

- а) Распространение световых волн происходит с различной скоростью.
- b) Распространение световых волн происходит с одинаковой скоростью.
- с) Световые волны не могут распространяться в вакууме.
- d) Из-за дифракции.

8 Укажите формулу по которой рассчитывают линейное увеличение линзы.

a)
$$\Gamma = \frac{f}{d}$$

b)
$$D = \frac{1}{F}$$

$$c) \quad \frac{1}{F} = \frac{1}{f} + \frac{1}{d}$$

d)
$$\frac{1}{F} = \frac{1}{f} - \frac{1}{d}$$

9 Какие типы спектра излучения существуют?

- а) Полосатый, сплошной, пятнистый
- b) Полосатый, линейчатый, пятнистый
- с) Полосатый, линейчатый сплошной
- d) Полосатый, сплошной, пятнистый

10 Диапазон длин волн рентгеновского излучения.

- а) От 10 до 400 нм
- b) От 380 до 760 нм
- с) От 760 до 3000 нм
- d) От 10^{-8} до 10^{-12} м

11 По какой формуле можно вычислить период колебания пружинного маятника?

a)
$$T = 2\pi\sqrt{LC}$$

b)
$$T = 2\pi \sqrt{\frac{l}{g}}$$

c)
$$T = 2\pi \sqrt{\frac{m}{k}}$$

d)
$$T = \frac{1}{v}$$

12 Кто из ученых открыл фотоэффект?

- а) Г. Герц
- b) А.Г. Столетов
- с) А. Эйнштейн
- d) М. Планк

13Укажите формулу соответствующую закону Стефана-Больцмана.

a)
$$E(T) = \delta T^4$$

b)
$$E(T) = dT^4$$

c)
$$E(T) = \delta T^2$$

d)
$$E(T) = dT^2$$

14 Как	ой элемент образуется после двух $lpha-$ распадов ядра тома урана $^{238}_{~92}U$
a)	$^{234}_{90}Th$
b)	$^{222}_{86}Rn$
	$^{226}_{88}Ra$
	$^{218}_{84}P_0$
	жите формулу eta — позитронного распада
	$^{1}_{1}p \rightarrow ^{1}_{0}n + ^{0}_{1}e + v$
	${}_{1}^{1}p \rightarrow {}_{0}^{1}n + {}_{-1}^{0}e + \tilde{v}$
	$ \begin{array}{l} 1 \\ 1p \rightarrow 0 \\ 1 \\ 1e + 0 \\ 1e \\ $
	${}^{1}_{1}p \rightarrow {}^{0}_{1}n + {}^{0}_{1}e + \nu$
	сса радиоактивного кобальта 4 г. Сколько граммов кобальта распадается за 216 суток, если
	ц полураспада 72 суток?
_	3,5 г
	3 кг
	3 г
	3,5 к
	ор теории о гелиоцентрическом строении Солнечной системы.
	Аль -Фараби
	Аристотель
	Кеплер
	Коперник
	ое количество спектральных классов в спектральной классификации звёзд?
a)	9
b)	5
c)	7
d)	3
19 В ка	аком году была предложена нынешняя классификация галактик?
a)	1930
b)	1825
c)	1925
d)	1931
20 Как	ая жидкость находится в сосуде если столб высотой 0,3 м оказывает давление 5400 Па
a)	1800 г/м ³ Серная кислота
b)	18 кг/м² Серная кислота
	1800кг/м ³ Серная кислота
d)	1800 м ³ /кг Серная кислота
	еделите энергию которой обладает яблоко массой 250 г, висящее на ветке на высоте 2 м.
	5 B
b)	50 A
c)	50 Дж
d)	5 Дж
22 Наз	овите единицу измерения ускорения свободного падения.
a)	M/C
b)	радиан
c)	M/c^2
d)	c
	сомотив имеет массу 500 тонн. Через 25 с после того, как он тронулся с места, скорость
	отива стала равна 18 км/ч. Какова сила тяги локомотива?
a)	5 кН

- b) 50 H
- c) 500H
- d) 100 κH
- 24 Какие взаимодействия определяют устойчивость ядер в атомах?
 - е) Электромагнитные
 - f) Гравитационные
 - g) Ядерные
 - h) Слабые
- 25 Найдите силу взаимодействия между точечными зарядами $q_1=2*10^{-7}\,\mathit{Kn}$ и $q_1=1.5*10^{-6}\mathit{Kn}$, находящимся в вакууме на расстоянии $r=20\,\mathit{cm}$ друг от друга.
 - a) 675* 10⁻⁴ H
 - b) 675* 10⁴ H
 - c) 675 H
- 6,75 H